|
from typing import Union |
|
|
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
import torch.nn as nn |
|
import torchaudio.transforms as transforms |
|
from transformers import PretrainedConfig, PreTrainedModel |
|
|
|
import dac |
|
from audiotools import AudioSignal |
|
|
|
from utils import freeze |
|
|
|
|
|
class DACConfig(PretrainedConfig): |
|
model_type = 'dac' |
|
|
|
def __init__(self, |
|
model_type_by_sampling_freq:str='44khz', |
|
encoding_chunk_size_in_sec:int=1, |
|
decoding_chunk_rate:float=0.1, |
|
decoding_overlap_rate:float=0.1, |
|
**kwargs): |
|
super().__init__(**kwargs) |
|
""" |
|
Initializes the model object. |
|
Args: |
|
model_type_by_sampling_freq (str, optional): The model type based on the sampling frequency. Defaults to '44khz'. Choose among ['44khz', '24khz', '16khz'] |
|
encoding_chunk_size_in_sec (int, optional): The size of the encoding chunk in seconds. Defaults to 1. |
|
decoding_chunk_rate (float, optional): The decoding chunk rate. Must be between 0 and 1. Defaults to 0.1. |
|
decoding_overlap_rate (float, optional): The decoding overlap rate. Must be between 0 and 1. Defaults to 0.1. |
|
**kwargs: Additional keyword arguments. |
|
Raises: |
|
AssertionError: If the model_type_by_sampling_freq is not one of ['44khz', '24khz', '16khz']. |
|
AssertionError: If the decoding_chunk_rate is not between 0 and 1. |
|
AssertionError: If the decoding_overlap_rate is not between 0 and 1. |
|
""" |
|
self.model_type_by_sampling_freq = model_type_by_sampling_freq |
|
self.encoding_chunk_size_in_sec = encoding_chunk_size_in_sec |
|
self.decoding_chunk_rate = decoding_chunk_rate |
|
self.decoding_overlap_rate = decoding_overlap_rate |
|
|
|
assert model_type_by_sampling_freq.lower() in ['44khz', '24khz', '16khz'] |
|
assert decoding_chunk_rate > 0 and decoding_chunk_rate <= 1.0, '`decoding_chunk_rate` must be bewteen 0 and 1.' |
|
assert decoding_overlap_rate >= 0 and decoding_overlap_rate < 1.0, '`decoding_overlap_rate` must be bewteen 0 and 1.' |
|
|
|
|
|
|
|
class DAC(PreTrainedModel): |
|
config_class = DACConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.model_type_by_sampling_freq = config.model_type_by_sampling_freq.lower() |
|
self.model_type_by_sampling_freq_int = {'44khz':44100, '24khz':24000, '16khz':16000}[self.model_type_by_sampling_freq] |
|
self.encoding_chunk_size_in_sec = config.encoding_chunk_size_in_sec |
|
self.decoding_chunk_rate = config.decoding_chunk_rate |
|
self.decoding_overlap_rate = config.decoding_overlap_rate |
|
|
|
|
|
dac_path = dac.utils.download(model_type=self.model_type_by_sampling_freq) |
|
self.dac = dac.DAC.load(dac_path) |
|
self.dac.eval() |
|
freeze(self.dac) |
|
|
|
self.downsampling_rate = int(np.prod(self.dac.encoder_rates)) |
|
|
|
def load_audio(self, filename:str): |
|
waveform, sample_rate = torchaudio.load(filename) |
|
return waveform, sample_rate |
|
|
|
def resample_audio(self, waveform:torch.FloatTensor, orig_sr:int, target_sr:int): |
|
""" |
|
- sr: sampling rate |
|
- waveform: (n_channels, length) |
|
""" |
|
if orig_sr == target_sr: |
|
return waveform |
|
|
|
converter = transforms.Resample(orig_freq=orig_sr, new_freq=target_sr) |
|
waveform = converter(waveform) |
|
return waveform |
|
|
|
def to_mono_channel(self, waveform:torch.FloatTensor): |
|
""" |
|
- waveform: (n_channels, length) |
|
""" |
|
n_channels = waveform.shape[0] |
|
if n_channels > 1: |
|
waveform = torch.mean(waveform, dim=0, keepdim=True) |
|
return waveform |
|
|
|
@torch.no_grad() |
|
def encode(self, audio_fname:str): |
|
self.eval() |
|
|
|
waveform, sr = self.load_audio(audio_fname) |
|
waveform = self.resample_audio(waveform, orig_sr=sr, target_sr=self.model_type_by_sampling_freq_int) |
|
sr = self.model_type_by_sampling_freq_int |
|
waveform = self.to_mono_channel(waveform) |
|
|
|
zq, s = self._chunk_encoding(waveform, sr) |
|
return zq, s |
|
|
|
def _chunk_encoding(self, waveform:torch.FloatTensor, sr:int): |
|
|
|
""" |
|
waveform: (c l) |
|
""" |
|
x = waveform |
|
x = x.unsqueeze(1) |
|
chunk_size = int(self.encoding_chunk_size_in_sec * sr) |
|
|
|
|
|
remainer = chunk_size % self.dac.hop_length |
|
chunk_size = chunk_size-remainer |
|
|
|
|
|
zq_list, s_list = [], [] |
|
audio_length = x.shape[-1] |
|
for start in range(0, audio_length, chunk_size): |
|
end = start + chunk_size |
|
chunk = x[:, :, start:end] |
|
chunk = self.dac.preprocess(chunk, sr) |
|
zq, s, _, _, _ = self.dac.encode(chunk.to(self.device)) |
|
zq = zq.cpu() |
|
s = s.cpu() |
|
""" |
|
"zq" : Tensor[B x D x T] |
|
Quantized continuous representation of input |
|
= summation of all the residual quantized vectors across every rvq level |
|
= E(x) = z = \sum_n^N{zq_n} where N is the number of codebooks |
|
"s" : Tensor[B x N x T] |
|
Codebook indices for each codebook |
|
(quantized discrete representation of input) |
|
*first element in the N dimension = first RVQ level |
|
""" |
|
zq_list.append(zq) |
|
s_list.append(s) |
|
torch.cuda.empty_cache() |
|
|
|
zq = torch.cat(zq_list, dim=2).float() |
|
s = torch.cat(s_list, dim=2).long() |
|
|
|
return zq, s |
|
|
|
@torch.no_grad() |
|
def decode(self, *, zq:Union[torch.FloatTensor,None]=None, s:Union[torch.IntTensor,None]=None): |
|
""" |
|
zq: (b, d, length) |
|
""" |
|
if isinstance(zq,type(None)) and isinstance(s,type(None)): |
|
assert False, 'one of them must be valid.' |
|
self.eval() |
|
|
|
if not isinstance(zq,type(None)): |
|
waveform = self._chunk_decoding(zq) |
|
if not isinstance(s,type(None)): |
|
zq = self.code_to_zq(s) |
|
waveform = self._chunk_decoding(zq) |
|
|
|
return waveform |
|
|
|
def _chunk_decoding(self, zq:torch.FloatTensor): |
|
""" |
|
zq: (b, d, length) |
|
""" |
|
length = zq.shape[-1] |
|
chunk_size = round(int(self.decoding_chunk_rate * length)) |
|
overlap_size = round(self.decoding_overlap_rate * chunk_size) |
|
overlap_size_in_data_space = round(overlap_size * self.downsampling_rate) |
|
waveform_concat = None |
|
for start in range(0, length, chunk_size-overlap_size): |
|
end = start + chunk_size |
|
chunk = zq[:,:, start:end] |
|
waveform = self.dac.decode(chunk.to(self.device)) |
|
waveform = waveform.cpu() |
|
|
|
if isinstance(waveform_concat, type(None)): |
|
waveform_concat = waveform.clone() |
|
else: |
|
if self.decoding_overlap_rate != 0.: |
|
prev_x = waveform_concat[:,:,:-overlap_size_in_data_space] |
|
rest_of_new_x = waveform[:,:,overlap_size_in_data_space:] |
|
overlap_x_from_prev_x = waveform_concat[:,:,-overlap_size_in_data_space:] |
|
overlap_x_from_new_x = waveform[:,:,:overlap_size_in_data_space] |
|
overlap = (overlap_x_from_prev_x + overlap_x_from_new_x) / 2 |
|
waveform_concat = torch.cat((prev_x, overlap, rest_of_new_x), dim=-1) |
|
else: |
|
prev_x = waveform_concat |
|
rest_of_new_x = waveform |
|
waveform_concat = torch.cat((prev_x, rest_of_new_x), dim=-1) |
|
return waveform_concat |
|
|
|
def code_to_zq(self, s:torch.IntTensor): |
|
""" |
|
s: (b, n_rvq, length) |
|
""" |
|
zq, _, _ = self.dac.quantizer.from_codes(s.to(self.device)) |
|
zq = zq.cpu() |
|
return zq |
|
|
|
def save_tensor(self, tensor:torch.Tensor, fname:str) -> None: |
|
torch.save(tensor.cpu(), fname) |
|
|
|
def load_tensor(self, fname:str): |
|
return torch.load(fname) |
|
|
|
def waveform_to_audiofile(self, waveform:torch.FloatTensor, fname:str) -> None: |
|
AudioSignal(waveform, sample_rate=self.model_type_by_sampling_freq_int).write(fname) |
|
|