from typing import Union import numpy as np import torch import torchaudio import torch.nn as nn import torchaudio.transforms as transforms from transformers import PretrainedConfig, PreTrainedModel import dac from audiotools import AudioSignal def freeze(model): for param in model.parameters(): param.requires_grad = False class DACConfig(PretrainedConfig): model_type = 'dac' def __init__(self, model_type_by_sampling_freq:str='16khz', encoding_chunk_size_in_sec:int=1, decoding_chunk_rate:float=0.1, decoding_overlap_rate:float=0.1, **kwargs): super().__init__(**kwargs) """ Initializes the model object. Args: model_type_by_sampling_freq (str, optional): The model type based on the sampling frequency. Defaults to '44khz'. Choose among ['44khz', '24khz', '16khz'] encoding_chunk_size_in_sec (int, optional): The size of the encoding chunk in seconds. Defaults to 1. decoding_chunk_rate (float, optional): The decoding chunk rate. Must be between 0 and 1. Defaults to 0.1. decoding_overlap_rate (float, optional): The decoding overlap rate. Must be between 0 and 1. Defaults to 0.1. **kwargs: Additional keyword arguments. Raises: AssertionError: If the model_type_by_sampling_freq is not one of ['44khz', '24khz', '16khz']. AssertionError: If the decoding_chunk_rate is not between 0 and 1. AssertionError: If the decoding_overlap_rate is not between 0 and 1. """ self.model_type_by_sampling_freq = model_type_by_sampling_freq self.encoding_chunk_size_in_sec = encoding_chunk_size_in_sec self.decoding_chunk_rate = decoding_chunk_rate self.decoding_overlap_rate = decoding_overlap_rate assert model_type_by_sampling_freq.lower() in ['44khz', '24khz', '16khz'] assert decoding_chunk_rate > 0 and decoding_chunk_rate <= 1.0, '`decoding_chunk_rate` must be bewteen 0 and 1.' assert decoding_overlap_rate >= 0 and decoding_overlap_rate < 1.0, '`decoding_overlap_rate` must be bewteen 0 and 1.' class DAC(PreTrainedModel): config_class = DACConfig def __init__(self, config): super().__init__(config) self.model_type_by_sampling_freq = config.model_type_by_sampling_freq.lower() self.model_type_by_sampling_freq_int = {'44khz':44100, '24khz':24000, '16khz':16000}[self.model_type_by_sampling_freq] self.encoding_chunk_size_in_sec = config.encoding_chunk_size_in_sec self.decoding_chunk_rate = config.decoding_chunk_rate self.decoding_overlap_rate = config.decoding_overlap_rate dac_path = dac.utils.download(model_type=self.model_type_by_sampling_freq) self.dac = dac.DAC.load(dac_path) self.dac.eval() freeze(self.dac) self.downsampling_rate = int(np.prod(self.dac.encoder_rates)) # 512 def load_audio(self, filename:str): waveform, sample_rate = torchaudio.load(filename) # waveform: (n_channels, length); sample_rate: const. return waveform, sample_rate def resample_audio(self, waveform:torch.FloatTensor, orig_sr:int, target_sr:int): """ - sr: sampling rate - waveform: (n_channels, length) """ if orig_sr == target_sr: return waveform converter = transforms.Resample(orig_freq=orig_sr, new_freq=target_sr) waveform = converter(waveform) # (n_channels, new_length) return waveform # (n_channels, new_length) def to_mono_channel(self, waveform:torch.FloatTensor): """ - waveform: (n_channels, length) """ n_channels = waveform.shape[0] if n_channels > 1: waveform = torch.mean(waveform, dim=0, keepdim=True) # (1, length) return waveform # (1, length) @torch.no_grad() def encode(self, audio_fname:str): self.eval() waveform, sr = self.load_audio(audio_fname) waveform = self.resample_audio(waveform, orig_sr=sr, target_sr=self.model_type_by_sampling_freq_int) sr = self.model_type_by_sampling_freq_int waveform = self.to_mono_channel(waveform) # DAC accepts a mono channel only. zq, s = self._chunk_encoding(waveform, sr) return zq, s def _chunk_encoding(self, waveform:torch.FloatTensor, sr:int): # TODO: can I make it parallel? """ waveform: (c l) """ x = waveform # brief varname x = x.unsqueeze(1) # (b 1 l); add a null batch dim chunk_size = int(self.encoding_chunk_size_in_sec * sr) # adjust `chunk_size` to prevent any padding in `dac.preprocess`, which causes a gap between the mini-batches in the resulting music. remainer = chunk_size % self.dac.hop_length chunk_size = chunk_size-remainer # process zq_list, s_list = [], [] audio_length = x.shape[-1] for start in range(0, audio_length, chunk_size): end = start + chunk_size chunk = x[:, :, start:end] chunk = self.dac.preprocess(chunk, sr) zq, s, _, _, _ = self.dac.encode(chunk.to(self.device)) zq = zq.cpu() s = s.cpu() """ "zq" : Tensor[B x D x T] Quantized continuous representation of input = summation of all the residual quantized vectors across every rvq level = E(x) = z = \sum_n^N{zq_n} where N is the number of codebooks "s" : Tensor[B x N x T] Codebook indices for each codebook (quantized discrete representation of input) *first element in the N dimension = first RVQ level """ zq_list.append(zq) s_list.append(s) torch.cuda.empty_cache() zq = torch.cat(zq_list, dim=2).float() # (1, d, length) s = torch.cat(s_list, dim=2).long() # (1, n_rvq, length) return zq, s @torch.no_grad() def decode(self, *, zq:Union[torch.FloatTensor,None]=None, s:Union[torch.IntTensor,None]=None): """ zq: (b, d, length) """ if isinstance(zq,type(None)) and isinstance(s,type(None)): assert False, 'one of them must be valid.' self.eval() if not isinstance(zq,type(None)): waveform = self._chunk_decoding(zq) # (b, 1, length); output always has a mono-channel. if not isinstance(s,type(None)): zq = self.code_to_zq(s) waveform = self._chunk_decoding(zq) # (b, 1, length); output always has a mono-channel. return waveform def _chunk_decoding(self, zq:torch.FloatTensor): """ zq: (b, d, length) """ length = zq.shape[-1] chunk_size = round(int(self.decoding_chunk_rate * length)) overlap_size = round(self.decoding_overlap_rate * chunk_size) # overlap size in terms of token length overlap_size_in_data_space = round(overlap_size * self.downsampling_rate) waveform_concat = None for start in range(0, length, chunk_size-overlap_size): end = start + chunk_size chunk = zq[:,:, start:end] # (b, d, chunk_size) waveform = self.dac.decode(chunk.to(self.device)) # (b, 1, chunk_size*self.downsampling_rate) waveform = waveform.cpu() waveform_len = waveform.shape[-1] if waveform_len < overlap_size_in_data_space: overlap_size_in_data_space = waveform_len if isinstance(waveform_concat, type(None)): waveform_concat = waveform.clone() else: if self.decoding_overlap_rate != 0.: prev_x = waveform_concat[:,:,:-overlap_size_in_data_space] rest_of_new_x = waveform[:,:,overlap_size_in_data_space:] overlap_x_from_prev_x = waveform_concat[:,:,-overlap_size_in_data_space:] # (b, 1, overlap_size_in_data_space) overlap_x_from_new_x = waveform[:,:,:overlap_size_in_data_space] # (b, 1, overlap_size_in_data_space) if not overlap_x_from_new_x.shape[-1] == 0: overlap = (overlap_x_from_prev_x + overlap_x_from_new_x) / 2 # take mean; maybe there's a better strategy but it seems to work fine. else: overlap = overlap_x_from_prev_x waveform_concat = torch.cat((prev_x, overlap, rest_of_new_x), dim=-1) # (b, 1, ..) else: prev_x = waveform_concat rest_of_new_x = waveform waveform_concat = torch.cat((prev_x, rest_of_new_x), dim=-1) # (b, 1, ..) return waveform_concat # (b, 1, length) def code_to_zq(self, s:torch.IntTensor): """ s: (b, n_rvq, length) """ zq, _, _ = self.dac.quantizer.from_codes(s.to(self.device)) # zq: (b, d, length) zq = zq.cpu() return zq def save_tensor(self, tensor:torch.Tensor, fname:str) -> None: torch.save(tensor.cpu(), fname) def load_tensor(self, fname:str): return torch.load(fname) def waveform_to_audiofile(self, waveform:torch.FloatTensor, fname:str) -> None: AudioSignal(waveform, sample_rate=self.model_type_by_sampling_freq_int).write(fname)