--- library_name: transformers license: mit base_model: indobenchmark/indobert-base-p1 tags: - generated_from_trainer datasets: - indonlu metrics: - accuracy - precision - recall - f1 model-index: - name: Model_analisis_sentimen results: - task: name: Text Classification type: text-classification dataset: name: indonlu type: indonlu config: smsa split: validation args: smsa metrics: - name: Accuracy type: accuracy value: 0.9412698412698413 - name: Precision type: precision value: 0.9167407809931684 - name: Recall type: recall value: 0.9068353459620502 - name: F1 type: f1 value: 0.9115530488925131 --- # Model_analisis_sentimen This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the indonlu dataset. It achieves the following results on the evaluation set: - Loss: 0.4175 - Accuracy: 0.9413 - Precision: 0.9167 - Recall: 0.9068 - F1: 0.9116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1