File size: 13,789 Bytes
c26f22f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# mask_rcnn_swin_meta.py - Mask R-CNN with Swin Transformer for data point segmentation
# 
# ADAPTED FROM CASCADE R-CNN CONFIG:
# - Uses same Swin Transformer Base backbone with optimizations
# - Maintains data-point class weighting (10x) and IoU strategies
# - Adds mask head for instance segmentation of data points
# - Uses enhanced annotation files with segmentation masks
# - Keeps custom hooks and progressive loss strategies
#
# MASK-SPECIFIC OPTIMIZATIONS:
# - RoI size 14x14 for mask extraction (matches data point size)
# - FCN mask head with 4 convolution layers
# - Mask loss weight balanced with bbox and classification losses
# - Enhanced test-time augmentation for better mask quality
#
# DATA POINT FOCUS:
# - Primary target: data-point class (ID 11) with 10x weight
# - Generates both bounding boxes AND instance masks
# - Optimized for 16x16 pixel data points in scientific charts
# Removed _base_ inheritance to avoid path issues - all configs are inlined below

# Custom imports - same as Cascade R-CNN setup
custom_imports = dict(
    imports=[
        'legend_match_swin.custom_models.register',
        'legend_match_swin.custom_models.custom_hooks',
        'legend_match_swin.custom_models.progressive_loss_hook',
        'legend_match_swin.custom_models.flexible_load_annotations',
    ],
    allow_failed_imports=False
)

# Add to Python path
import sys
sys.path.insert(0, '.')

# Mask R-CNN model with Swin Transformer backbone
model = dict(
    type='MaskRCNN',
    data_preprocessor=dict(
        type='DetDataPreprocessor',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True,
        pad_size_divisor=32,
        pad_mask=True,  # Important for mask training
        mask_pad_value=0,
    ),
    # Same Swin Transformer Base backbone as Cascade R-CNN
    backbone=dict(
        type='SwinTransformer',
        embed_dims=128,  # Swin Base embedding dimensions
        depths=[2, 2, 18, 2],  # Swin Base depths
        num_heads=[4, 8, 16, 32],  # Swin Base attention heads
        window_size=7,
        mlp_ratio=4,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.3,  # Same as Cascade config
        patch_norm=True,
        out_indices=(0, 1, 2, 3),
        with_cp=False,
        convert_weights=True,
        init_cfg=dict(
            type='Pretrained',
            checkpoint='https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_22k_20220317-4f79f7c0.pth'
        )
    ),
    # Same FPN as Cascade R-CNN
    neck=dict(
        type='FPN',
        in_channels=[128, 256, 512, 1024],  # Swin Base: embed_dims * 2^(stage)
        out_channels=256,
        num_outs=5,  # Standard for Mask R-CNN (was 6 in Cascade)
        start_level=0,
        add_extra_convs='on_input'
    ),
    # Same RPN configuration as Cascade R-CNN
    rpn_head=dict(
        type='RPNHead',
        in_channels=256,
        feat_channels=256,
        anchor_generator=dict(
            type='AnchorGenerator',
            scales=[1, 2, 4, 8],  # Same small scales for tiny objects
            ratios=[0.5, 1.0, 2.0],
            strides=[4, 8, 16, 32, 64]),  # Standard FPN strides for Mask R-CNN
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[1.0, 1.0, 1.0, 1.0]),
        loss_cls=dict(
            type='CrossEntropyLoss',
            use_sigmoid=True,
            loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)
    ),
    # Mask R-CNN ROI head with bbox + mask branches
    roi_head=dict(
        type='StandardRoIHead',
        # Bbox ROI extractor (same as Cascade R-CNN final stage)
        bbox_roi_extractor=dict(
            type='SingleRoIExtractor',
            roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32]
        ),
        # Bbox head with data-point class weighting
        bbox_head=dict(
            type='Shared2FCBBoxHead',
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=22,  # 22 enhanced categories including boxplot
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[0., 0., 0., 0.],
                target_stds=[0.1, 0.1, 0.2, 0.2]
            ),
            reg_class_agnostic=False,
            loss_cls=dict(
                type='CrossEntropyLoss',
                use_sigmoid=False,
                loss_weight=1.0,
                class_weight=[1.0,  # background class (index 0)
                             1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 
                             10.0,  # data-point at index 12 gets 10x weight (11+1 for background)
                             1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]  # Added boxplot class
            ),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)
        ),
        # Mask ROI extractor (optimized for 16x16 data points)
        mask_roi_extractor=dict(
            type='SingleRoIExtractor',
            roi_layer=dict(type='RoIAlign', output_size=(14, 14), sampling_ratio=0, aligned=True),  # Force exact 14x14 with legacy alignment
            out_channels=256,
            featmap_strides=[4, 8, 16, 32]
        ),
        # Mask head optimized for data points with square mask targets
        mask_head=dict(
            type='SquareFCNMaskHead',
            num_convs=4,  # 4 conv layers for good feature extraction
            in_channels=256,
            roi_feat_size=14,  # Explicitly set ROI feature size
            conv_out_channels=256,
            num_classes=22,  # 22 enhanced categories including boxplot
            upsample_cfg=dict(type=None),  # No upsampling - keep 14x14
            loss_mask=dict(
                type='CrossEntropyLoss', 
                use_mask=True, 
                loss_weight=1.0  # Balanced with bbox loss
            )
        )
    ),
    # Training configuration adapted from Cascade R-CNN
    train_cfg=dict(
        rpn=dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.7,
                neg_iou_thr=0.3,
                min_pos_iou=0.3,
                match_low_quality=True,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=256,
                pos_fraction=0.5,
                neg_pos_ub=-1,
                add_gt_as_proposals=False),
            allowed_border=0,
            pos_weight=-1,
            debug=False),
        rpn_proposal=dict(
            nms_pre=2000,
            max_per_img=1000,
            nms=dict(type='nms', iou_threshold=0.7),
            min_bbox_size=0),
        # RCNN training (using Cascade stage 2 settings - balanced for mask training)
        rcnn=dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.5,  # Balanced IoU for bbox + mask training
                neg_iou_thr=0.5,
                min_pos_iou=0.5,
                match_low_quality=True,  # Important for small data points
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            mask_size=(14, 14),  # Force exact 14x14 size for data points
            pos_weight=-1,
            debug=False)
    ),
    # Test configuration with soft NMS
    test_cfg=dict(
        rpn=dict(
            nms_pre=1000,
            max_per_img=1000,
            nms=dict(type='nms', iou_threshold=0.7),
            min_bbox_size=0),
        rcnn=dict(
            score_thr=0.005,  # Low threshold to catch data points
            nms=dict(
                type='soft_nms',  # Soft NMS for better small object detection
                iou_threshold=0.3,  # Low for data points
                min_score=0.005,
                method='gaussian',
                sigma=0.5),
            max_per_img=100,
            mask_thr_binary=0.5  # Binary mask threshold
        )
    )
)

# Dataset settings - using standard COCO dataset for mask support
dataset_type = 'CocoDataset'
data_root = ''

# 22 enhanced categories including boxplot
CLASSES = (
    'title', 'subtitle', 'x-axis', 'y-axis', 'x-axis-label', 'y-axis-label',        # 0-5
    'x-tick-label', 'y-tick-label', 'legend', 'legend-title', 'legend-item',        # 6-10
    'data-point', 'data-line', 'data-bar', 'data-area', 'grid-line',              # 11-15 (data-point at index 11)
    'axis-title', 'tick-label', 'data-label', 'legend-text', 'plot-area',         # 16-20
    'boxplot'                                                                      # 21
)

# Verify data-point class index
assert CLASSES[11] == 'data-point', f"Expected 'data-point' at index 11 in CLASSES tuple, got '{CLASSES[11]}'"

# Training dataloader with mask annotations
train_dataloader = dict(
    batch_size=2,  # Same as Cascade R-CNN
    num_workers=2,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='legend_match_swin/mask_generation/enhanced_datasets/train_filtered_with_masks_only.json',
        data_prefix=dict(img='legend_data/train/images/'),
        metainfo=dict(classes=CLASSES),
        filter_cfg=dict(filter_empty_gt=False, min_size=12),  # Don't filter out images with masks
        # Disable any built-in filtering that might remove annotations
        test_mode=False,
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='FlexibleLoadAnnotations', with_bbox=True, with_mask=True),
            dict(type='Resize', scale=(1120, 672), keep_ratio=True),
            dict(type='RandomFlip', prob=0.5),
            dict(type='ClampBBoxes'),
            dict(type='PackDetInputs')
        ]
    )
)

# Validation dataloader with mask annotations
val_dataloader = dict(
    batch_size=1,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='legend_match_swin/mask_generation/enhanced_datasets/val_enriched_with_masks_only.json',
        data_prefix=dict(img='legend_data/train/images/'),
        metainfo=dict(classes=CLASSES),
        test_mode=True,
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='Resize', scale=(1120, 672), keep_ratio=True),
            dict(type='FlexibleLoadAnnotations', with_bbox=True, with_mask=True),
            dict(type='ClampBBoxes'),
            dict(type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor'))
        ]
    )
)

test_dataloader = val_dataloader

# Enhanced evaluators for both bbox and mask metrics
val_evaluator = dict(
    type='CocoMetric',
    ann_file='legend_match_swin/mask_generation/enhanced_datasets/val_enriched_with_masks_only.json',
    metric=['bbox', 'segm'],
    format_only=False,
    classwise=True,
    proposal_nums=(100, 300, 1000)
)

test_evaluator = val_evaluator

# Same custom hooks as Cascade R-CNN
default_hooks = dict(
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=50),
    param_scheduler=dict(type='ParamSchedulerHook'),
    checkpoint=dict(type='CompatibleCheckpointHook', interval=1, save_best='auto', max_keep_ckpts=3),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    visualization=dict(type='DetVisualizationHook')
)

# Same custom hooks as Cascade R-CNN (adapted for Mask R-CNN)
custom_hooks = [
    dict(type='SkipBadSamplesHook', interval=1),
    dict(type='ChartTypeDistributionHook', interval=500),
    dict(type='MissingImageReportHook', interval=1000),
    dict(type='NanRecoveryHook',
         fallback_loss=1.0,
         max_consecutive_nans=50,
         log_interval=25),
    # Note: Progressive loss hook not used in standard Mask R-CNN
    # but could be adapted if needed for bbox loss only
]

# Training configuration - reduced to 20 epochs
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=20, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')

# Same optimizer settings as Cascade R-CNN
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001),
    clip_grad=dict(max_norm=10.0, norm_type=2)
)

# Same learning rate schedule as Cascade R-CNN
param_scheduler = [
    dict(
        type='LinearLR', 
        start_factor=0.1,
        by_epoch=False, 
        begin=0, 
        end=1000),
    dict(
        type='CosineAnnealingLR',
        begin=0,
        end=20,
        by_epoch=True,
        T_max=20,
        eta_min=1e-5,
        convert_to_iter_based=True)
]

# Work directory
work_dir = '/content/drive/MyDrive/Research Summer 2025/Dense Captioning Toolkit/CHART-DeMatch/work_dirs/mask_rcnn_swin_base_20ep_meta'

# Fresh start
resume = False
load_from = None

# Default runtime settings (normally inherited from _base_)
default_scope = 'mmdet'
env_cfg = dict(
    cudnn_benchmark=False,
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    dist_cfg=dict(backend='nccl'),
)

vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer')

log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
log_level = 'INFO'