haoranxu commited on
Commit
fe1686b
•
1 Parent(s): ec7e8c8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -2,7 +2,7 @@
2
  license: mit
3
  ---
4
  **[ALMA-R](https://arxiv.org/abs/2401.08417)** builds upon [ALMA models](https://arxiv.org/abs/2309.11674), with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners!
5
-
6
  @misc{xu2024contrastive,
7
  title={Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation},
8
  author={Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim},
@@ -11,7 +11,7 @@ license: mit
11
  archivePrefix={arXiv},
12
  primaryClass={cs.CL}
13
  }
14
-
15
  # Download ALMA(-R) Models and Dataset 🚀
16
 
17
  We release six translation models presented in the paper:
 
2
  license: mit
3
  ---
4
  **[ALMA-R](https://arxiv.org/abs/2401.08417)** builds upon [ALMA models](https://arxiv.org/abs/2309.11674), with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners!
5
+ ```
6
  @misc{xu2024contrastive,
7
  title={Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation},
8
  author={Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim},
 
11
  archivePrefix={arXiv},
12
  primaryClass={cs.CL}
13
  }
14
+ ```
15
  # Download ALMA(-R) Models and Dataset 🚀
16
 
17
  We release six translation models presented in the paper: