happycoding
commited on
Commit
•
12fcc8f
1
Parent(s):
ea948c6
Initial commit of sac 1000steps
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- sac-PandaReachDense-v2.zip +3 -0
- sac-PandaReachDense-v2/_stable_baselines3_version +1 -0
- sac-PandaReachDense-v2/actor.optimizer.pth +3 -0
- sac-PandaReachDense-v2/critic.optimizer.pth +3 -0
- sac-PandaReachDense-v2/data +110 -0
- sac-PandaReachDense-v2/ent_coef_optimizer.pth +3 -0
- sac-PandaReachDense-v2/policy.pth +3 -0
- sac-PandaReachDense-v2/pytorch_variables.pth +3 -0
- sac-PandaReachDense-v2/system_info.txt +7 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SAC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -14.51 +/- 3.18
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **SAC** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **SAC** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7f70fff769d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f70fff753c0>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAC2eJr3k8+mXV4kxdFIEtIAmDNaMsLzz/jQc/ACIojEStq/HdHRADwDC2kqTQPmI1rAOcMvgirMV1xHA/4Ji0u6l1nbvztbt2dGCvblP9FVQLO+yBkYZoC96rNx/2X6XRz+CXtq6aLHGnnenw8trQ55YGdO8SL52IdZl6L9rojryIeAhPzkTa/kvca2r/34gIM+9OTRxirijJh4rwftFU7t8/eeqEbHagSyZra+JU8rAUbHsKopgu0nqIp+nXSSSw2hko9euo52SanpofKPP09FiFDJywCq2xU0peteYAKglECW7gAZAIyUYy+1WMuwWmVyTarXcOQepT/yW+/Y6SSDUbpp+C3yl9rsJBDg0v3WnPgIRgeW/lxrXXEc+iuXc8hLT2thMWjsMIiDHyZCjxSnNbXewkhI96vTpRZPYD+gST6g3hJVO2uWdpQY6VpmwDRKbvRqsOzvR3Cv/bN4ary016gjetk4RVOb/VxPN29ULb/jFQ8AwuXHt/LK49LBUkeVALiEZkAXDVJt65ifcsU+0KKoEaIcZuArSMjgu+THzLCNvu/DVacX28K+2MHt/iUMcpJtRpmGUnnNDw9Vzdie/dpEke/XMv8mM6zD+E83ecupgt5Dit++bnO1Gj7/idqpy87HVYzO73gGt3hsbUFqueHmIllR3q3OEgUEqJ0cz/t4y6IYf8SCuWp3bssU6m0grW3NALsSctOwrlWv+wNrXMN6zfk+rk3wjdIeAEM5r6AcuL00FdQU3O688do3OKLt6iS8O3lhrWfWo0g6mGMLsmQwAhjz6DkppFgATqsy+H9u7lvw57GiRO8D3S3ZsAg0kQLTqR1Hur0o9f7pKzLUi/3VDam1G/WP+qYrDRQ2PVBSHnXbPzj34HZLINkX47JcOM6SfeaAxdyno0EP6ZVnqYiP9oQ53GRBgeT6T3EdgMbEeDzLrNeSon4BEHCopkS83NjwOdH05kDx9JI6IkAnzmZbWyP0ugMXY2Jp5u5z18iAGdSYwulXz8FxeR5QAimFwhu0OXJIMGxczAjTT/0JO56VSo6BXi6cVWvLuR7v1Ms34OvZVN2y0f+INwnWE88+DLbRP+x9AopOesBzNLzPIP7hTPvp8VH5tVvLagMMeNRdjyal68VcE+ObkS5AF3cHRVBbt8J+vbJAlvSqgtLAkeeGARPXUzaKLZiHRjMwO9xwURoBTceF9CxIxGrZfsotlS5kSoC551HxYj+ZMDy6DGZGsJBQsGTdBiaky4U1dOp6ebrZ7sxdVx8f661Tfa2ONHhzrOwlwYlepUkJ5fa4xFwP822WD8plKMMPL9JLoA8PI6PCZFu0imdavA0D7MNTMye/1vlnLCWY5plZQNAYJvXuv3EHvDSyF5cQVNO/By+gkw83lvgTlW0Vgdv46cT+vkTomT7i/e72MFXfjZ70gPnWR170HVbAMn+6vpDFw4EKI+kJBEu+75MsWDs+5PzFzQeFSaGNs0i2Otjtll6QD5i+fjZMkr5H2TCpGOW8PhP5/IH5eO86YLvT9D2GLxTdv7Ekz1Oiux3BDEPFcGPVEErfgf7lHTkyn7G8koObPsZvPMy5yNlgw19PbeuEenDFqdg+zWKCyJ4yEkdTvaJthEglpA30DZD6Nx9q1OiMZfKJdZu8iMolXIaFpVKppnor7Pvg+TA1g8q4ZX+629Ug1tqYPykUIUXylCIJYvi87s/KnXwHyYd3MGZFFsj26PBD4I+aSF73HP639dOkbKXJISNFte2jTBKKKjDAK2Cyb3somTxCgFbT8aXuxDUxiLKJa00H/P2LAV4Qofgmmr0RdYmXDf+OPeEapW/6oWKvuIt5PEzeu/fR6hj/AFTYhYx4PBz93iVn4SkwUfU2+1duhoz2E3mb5mn+lHEYuDWa19daV8QAFcOktz/qtIrPk+v2C9z4F+MkKzufvX17hZVXOBE55wajQiBauNINxKaKuyn1ktbrYCsFYwMKChqRh9Suxeyvn0TM7qgwETj3SD5/6rPrud/1bYc6wgGrKXb6vDC+v7Gs0STEocQNzdZLkStzGkuOwsz1zIGE7aMP39Ges98swaA6md0Xz1+eelc14HM5aUwfynEbw1X6HIQM9QtxX3MXs0WlQkYu3+myrJnLFKj5QET2ZL2NrOvyjLP3aWEiwPgV6rW/zAC4eTi7CHbCKLlo/UkG5ioLhiIbxBhl1UVw7p4X4ZblwJpjaQ/T6x0r2tVZx9jX80i2GHf95H/Av6T4/LU6VEl0AR+xSegPF9PZfANt4dqyOn8QpQhtLJHX4q/t2u1D4sOSr2A6CfcLBn+GLLMdza/P9zHinKcgMRP+ipoRijIH8mTIZ7IHGkWitmmNyLdKJq751qsG0sLciod8H1kXvaC9Wmd4Iu8KwNTYmzpLbD2elk89H4nvOd5ZdLGsWcKooOz5V72AC63e02C7qwWuHIk11CZAVLzVH8bM3pjJL1ngV9J1I/KGxaiuxSMIEl/rGMLUG/zFFADxoSD/OiFdZXT1ZrVhUU2iLyzfFE4OTKfaZWlfvwR9CIDA0VvBW3F91USA8hc83jA+HkiJGsJIDMD+T47enq+oEmm+2WMIcXmQ/5brYMJT3OckqiMKZPXMofeR1d0jgebxEV0bIBx4987LubdtEcc8TjplQkitQkJla44LsOKmZZaI1v4t5ua0SU8uaSdny1YoyMM4e6bhVxD3v/VpYSv4nGnz4JRdXQpOZHR65JFFOOFYle+kS29eDZo7QZr99YLyRH1MI1iCDWma5MhcuZrkDPtHcGVJvmDOoa5cywRiCHt6PSESReimYeKgXpmQice9ohSaq0cV+2WDgxX1Y4VsYUdf6PlIz0Buj4apQB6OI/gr0oMqIvutJGXNbG5NSonywbThtY9YICzH4GubbDfCKQsQI3JzGvXfVAHIHziodHkXYVfMqmj2Gh8ox8I8xYC4Gzn2dey3UX0Cb/vlmRlIaJU6r0Pqq/V0kiCm087NxMwlm/STYGTPOdcMaJLmAGpJUAl15GXw4uC1QEDfRNOYGzuV1I5IaDb/ykfcNAx3G9R/1Nka/rIf5L78g0xQNmF8/mFTeMDBilWI5SH8EVMugzVeOd/+knd5HYzilpxYc72Hj88KAzHQc2tmW7Q/EuFbs9WTwivNLdgds2AFT2f1dBPhV9anlwwYUQcyOliSiiKp0Su4ENvzJ1u1V/YnQriSWdKb+qGb+tQlMuHqiaGlpDuN8J9+qej82jSrqiiCwTp448GrHxb2yd6MnQUh9LTwaHXaX+3RFytRP/anaD1P7UECQXJpw2Kd9rQSaWjkxUzZpea14m+SnUDzYSpjvmyUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNWAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 1000, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677136074675499674, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALxkoQNNf3j4CNZE/WaUbPx7X3r5VYcK+zAkQQC/dTL+8f38+QgazvoBZdz8dSDq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAChQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]]", "desired_goal": "[[ 2.626537 0.43432483 1.1344302 ]\n [ 0.60799176 -0.43523496 -0.37964883]\n [ 2.250598 -0.80025 0.2495107 ]\n [-0.34965712 0.9662094 -0.72766286]]", "observation": "[[0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAocUQPg2Agj2o4X8+XiKYPFYEGrxKNwk+uLPyPS06JL2zhjo+I5QivXAZ3j2G4ds9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1413789 0.0637208 0.24988425]\n [ 0.01857108 -0.00940045 0.13399997]\n [ 0.11850685 -0.04009454 0.18215446]\n [-0.03969206 0.10844696 0.10736375]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 20, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISYCaWrYWLsCUhpRSlIwBbJRLMowBdJRHQCJRCMPz4Dd1fZQoaAZoCWgPQwjekEYFToYowJSGlFKUaBVLMmgWR0AiFCMxXXAedX2UKGgGaAloD0MIxy5RvTVoJsCUhpRSlGgVSzJoFkdAIdsMiKR+0HV9lChoBmgJaA9DCPbsuUxNQiTAlIaUUpRoFUsyaBZHQCGfUe+23KB1fZQoaAZoCWgPQwh00ZDxKOUcwJSGlFKUaBVLMmgWR0AmBHzYmLLqdX2UKGgGaAloD0MI/irAd5tnHsCUhpRSlGgVSzJoFkdAJcbkwN9YwXV9lChoBmgJaA9DCJW2uMZnZjDAlIaUUpRoFUsyaBZHQCWLeIl+mWN1fZQoaAZoCWgPQwhKQiJt4wcnwJSGlFKUaBVLMmgWR0AlTW+XZ5AydX2UKGgGaAloD0MIkfP+P06IF8CUhpRSlGgVSzJoFkdAKE60IC2c8XV9lChoBmgJaA9DCFlPrb66+h/AlIaUUpRoFUsyaBZHQCgQ9RrJr+J1fZQoaAZoCWgPQwhlw5rKoigswJSGlFKUaBVLMmgWR0An1TBInSfEdX2UKGgGaAloD0MINdQoJJkdI8CUhpRSlGgVSzJoFkdAJ5ddmg8KX3V9lChoBmgJaA9DCN7oYz4giCTAlIaUUpRoFUsyaBZHQCqU052hZhd1fZQoaAZoCWgPQwhszOuIQ8YqwJSGlFKUaBVLMmgWR0AqV0SRKYiQdX2UKGgGaAloD0MI61VkdEDKI8CUhpRSlGgVSzJoFkdAKhycbzbvgHV9lChoBmgJaA9DCLhX5q26divAlIaUUpRoFUsyaBZHQCnfUx20Re11fZQoaAZoCWgPQwiwjuOHSlsswJSGlFKUaBVLMmgWR0As2FqzqrzYdX2UKGgGaAloD0MIQgjIl1ChKcCUhpRSlGgVSzJoFkdALJqLKmsNlXV9lChoBmgJaA9DCEJ79fHQZyXAlIaUUpRoFUsyaBZHQCxenIhhYvF1fZQoaAZoCWgPQwj4wfnUsbImwJSGlFKUaBVLMmgWR0AsIKpDNQj2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV0wIAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUZS4="}, "_n_updates": 225, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7f70fffbf4c0>", "add": "<function DictReplayBuffer.add at 0x7f70fffbf550>", "sample": "<function DictReplayBuffer.sample at 0x7f70fffbf5e0>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7f70fffbf670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f70fffb5c60>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -3.0, "ent_coef": "auto", "target_update_interval": 1, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (662 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -14.510865413583815, "std_reward": 3.176440984505635, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-23T07:09:18.679382"}
|
sac-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:903318d8dfcf06af6c9a62ed19864bd245252246c4b85a664d01a8b86b3f75be
|
3 |
+
size 3141234
|
sac-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
sac-PandaReachDense-v2/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7ca0aa73e6fbb644dab6b7a21167217fb4a58f6cfe5ef48eef7e4d5f96f18da
|
3 |
+
size 571805
|
sac-PandaReachDense-v2/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3159750b9f1fcee7f7e5bd56ff22ba3fddd78470e78beac71a0b668280760df5
|
3 |
+
size 1132025
|
sac-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x7f70fff769d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f70fff753c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
"use_sde": false
|
14 |
+
},
|
15 |
+
"observation_space": {
|
16 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
17 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
18 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
19 |
+
"_shape": null,
|
20 |
+
"dtype": null,
|
21 |
+
"_np_random": null
|
22 |
+
},
|
23 |
+
"action_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAC2eJr3k8+mXV4kxdFIEtIAmDNaMsLzz/jQc/ACIojEStq/HdHRADwDC2kqTQPmI1rAOcMvgirMV1xHA/4Ji0u6l1nbvztbt2dGCvblP9FVQLO+yBkYZoC96rNx/2X6XRz+CXtq6aLHGnnenw8trQ55YGdO8SL52IdZl6L9rojryIeAhPzkTa/kvca2r/34gIM+9OTRxirijJh4rwftFU7t8/eeqEbHagSyZra+JU8rAUbHsKopgu0nqIp+nXSSSw2hko9euo52SanpofKPP09FiFDJywCq2xU0peteYAKglECW7gAZAIyUYy+1WMuwWmVyTarXcOQepT/yW+/Y6SSDUbpp+C3yl9rsJBDg0v3WnPgIRgeW/lxrXXEc+iuXc8hLT2thMWjsMIiDHyZCjxSnNbXewkhI96vTpRZPYD+gST6g3hJVO2uWdpQY6VpmwDRKbvRqsOzvR3Cv/bN4ary016gjetk4RVOb/VxPN29ULb/jFQ8AwuXHt/LK49LBUkeVALiEZkAXDVJt65ifcsU+0KKoEaIcZuArSMjgu+THzLCNvu/DVacX28K+2MHt/iUMcpJtRpmGUnnNDw9Vzdie/dpEke/XMv8mM6zD+E83ecupgt5Dit++bnO1Gj7/idqpy87HVYzO73gGt3hsbUFqueHmIllR3q3OEgUEqJ0cz/t4y6IYf8SCuWp3bssU6m0grW3NALsSctOwrlWv+wNrXMN6zfk+rk3wjdIeAEM5r6AcuL00FdQU3O688do3OKLt6iS8O3lhrWfWo0g6mGMLsmQwAhjz6DkppFgATqsy+H9u7lvw57GiRO8D3S3ZsAg0kQLTqR1Hur0o9f7pKzLUi/3VDam1G/WP+qYrDRQ2PVBSHnXbPzj34HZLINkX47JcOM6SfeaAxdyno0EP6ZVnqYiP9oQ53GRBgeT6T3EdgMbEeDzLrNeSon4BEHCopkS83NjwOdH05kDx9JI6IkAnzmZbWyP0ugMXY2Jp5u5z18iAGdSYwulXz8FxeR5QAimFwhu0OXJIMGxczAjTT/0JO56VSo6BXi6cVWvLuR7v1Ms34OvZVN2y0f+INwnWE88+DLbRP+x9AopOesBzNLzPIP7hTPvp8VH5tVvLagMMeNRdjyal68VcE+ObkS5AF3cHRVBbt8J+vbJAlvSqgtLAkeeGARPXUzaKLZiHRjMwO9xwURoBTceF9CxIxGrZfsotlS5kSoC551HxYj+ZMDy6DGZGsJBQsGTdBiaky4U1dOp6ebrZ7sxdVx8f661Tfa2ONHhzrOwlwYlepUkJ5fa4xFwP822WD8plKMMPL9JLoA8PI6PCZFu0imdavA0D7MNTMye/1vlnLCWY5plZQNAYJvXuv3EHvDSyF5cQVNO/By+gkw83lvgTlW0Vgdv46cT+vkTomT7i/e72MFXfjZ70gPnWR170HVbAMn+6vpDFw4EKI+kJBEu+75MsWDs+5PzFzQeFSaGNs0i2Otjtll6QD5i+fjZMkr5H2TCpGOW8PhP5/IH5eO86YLvT9D2GLxTdv7Ekz1Oiux3BDEPFcGPVEErfgf7lHTkyn7G8koObPsZvPMy5yNlgw19PbeuEenDFqdg+zWKCyJ4yEkdTvaJthEglpA30DZD6Nx9q1OiMZfKJdZu8iMolXIaFpVKppnor7Pvg+TA1g8q4ZX+629Ug1tqYPykUIUXylCIJYvi87s/KnXwHyYd3MGZFFsj26PBD4I+aSF73HP639dOkbKXJISNFte2jTBKKKjDAK2Cyb3somTxCgFbT8aXuxDUxiLKJa00H/P2LAV4Qofgmmr0RdYmXDf+OPeEapW/6oWKvuIt5PEzeu/fR6hj/AFTYhYx4PBz93iVn4SkwUfU2+1duhoz2E3mb5mn+lHEYuDWa19daV8QAFcOktz/qtIrPk+v2C9z4F+MkKzufvX17hZVXOBE55wajQiBauNINxKaKuyn1ktbrYCsFYwMKChqRh9Suxeyvn0TM7qgwETj3SD5/6rPrud/1bYc6wgGrKXb6vDC+v7Gs0STEocQNzdZLkStzGkuOwsz1zIGE7aMP39Ges98swaA6md0Xz1+eelc14HM5aUwfynEbw1X6HIQM9QtxX3MXs0WlQkYu3+myrJnLFKj5QET2ZL2NrOvyjLP3aWEiwPgV6rW/zAC4eTi7CHbCKLlo/UkG5ioLhiIbxBhl1UVw7p4X4ZblwJpjaQ/T6x0r2tVZx9jX80i2GHf95H/Av6T4/LU6VEl0AR+xSegPF9PZfANt4dqyOn8QpQhtLJHX4q/t2u1D4sOSr2A6CfcLBn+GLLMdza/P9zHinKcgMRP+ipoRijIH8mTIZ7IHGkWitmmNyLdKJq751qsG0sLciod8H1kXvaC9Wmd4Iu8KwNTYmzpLbD2elk89H4nvOd5ZdLGsWcKooOz5V72AC63e02C7qwWuHIk11CZAVLzVH8bM3pjJL1ngV9J1I/KGxaiuxSMIEl/rGMLUG/zFFADxoSD/OiFdZXT1ZrVhUU2iLyzfFE4OTKfaZWlfvwR9CIDA0VvBW3F91USA8hc83jA+HkiJGsJIDMD+T47enq+oEmm+2WMIcXmQ/5brYMJT3OckqiMKZPXMofeR1d0jgebxEV0bIBx4987LubdtEcc8TjplQkitQkJla44LsOKmZZaI1v4t5ua0SU8uaSdny1YoyMM4e6bhVxD3v/VpYSv4nGnz4JRdXQpOZHR65JFFOOFYle+kS29eDZo7QZr99YLyRH1MI1iCDWma5MhcuZrkDPtHcGVJvmDOoa5cywRiCHt6PSESReimYeKgXpmQice9ohSaq0cV+2WDgxX1Y4VsYUdf6PlIz0Buj4apQB6OI/gr0oMqIvutJGXNbG5NSonywbThtY9YICzH4GubbDfCKQsQI3JzGvXfVAHIHziodHkXYVfMqmj2Gh8ox8I8xYC4Gzn2dey3UX0Cb/vlmRlIaJU6r0Pqq/V0kiCm087NxMwlm/STYGTPOdcMaJLmAGpJUAl15GXw4uC1QEDfRNOYGzuV1I5IaDb/ykfcNAx3G9R/1Nka/rIf5L78g0xQNmF8/mFTeMDBilWI5SH8EVMugzVeOd/+knd5HYzilpxYc72Hj88KAzHQc2tmW7Q/EuFbs9WTwivNLdgds2AFT2f1dBPhV9anlwwYUQcyOliSiiKp0Su4ENvzJ1u1V/YnQriSWdKb+qGb+tQlMuHqiaGlpDuN8J9+qej82jSrqiiCwTp448GrHxb2yd6MnQUh9LTwaHXaX+3RFytRP/anaD1P7UECQXJpw2Kd9rQSaWjkxUzZpea14m+SnUDzYSpjvmyUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNWAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
3
|
29 |
+
],
|
30 |
+
"low": "[-1. -1. -1.]",
|
31 |
+
"high": "[1. 1. 1.]",
|
32 |
+
"bounded_below": "[ True True True]",
|
33 |
+
"bounded_above": "[ True True True]",
|
34 |
+
"_np_random": "RandomState(MT19937)"
|
35 |
+
},
|
36 |
+
"n_envs": 4,
|
37 |
+
"num_timesteps": 1000,
|
38 |
+
"_total_timesteps": 1000,
|
39 |
+
"_num_timesteps_at_start": 0,
|
40 |
+
"seed": null,
|
41 |
+
"action_noise": null,
|
42 |
+
"start_time": 1677136074675499674,
|
43 |
+
"learning_rate": 0.0003,
|
44 |
+
"tensorboard_log": null,
|
45 |
+
"lr_schedule": {
|
46 |
+
":type:": "<class 'function'>",
|
47 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
48 |
+
},
|
49 |
+
"_last_obs": {
|
50 |
+
":type:": "<class 'collections.OrderedDict'>",
|
51 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALxkoQNNf3j4CNZE/WaUbPx7X3r5VYcK+zAkQQC/dTL+8f38+QgazvoBZdz8dSDq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAChQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
52 |
+
"achieved_goal": "[[0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]]",
|
53 |
+
"desired_goal": "[[ 2.626537 0.43432483 1.1344302 ]\n [ 0.60799176 -0.43523496 -0.37964883]\n [ 2.250598 -0.80025 0.2495107 ]\n [-0.34965712 0.9662094 -0.72766286]]",
|
54 |
+
"observation": "[[0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]]"
|
55 |
+
},
|
56 |
+
"_last_episode_starts": {
|
57 |
+
":type:": "<class 'numpy.ndarray'>",
|
58 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
59 |
+
},
|
60 |
+
"_last_original_obs": {
|
61 |
+
":type:": "<class 'collections.OrderedDict'>",
|
62 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAocUQPg2Agj2o4X8+XiKYPFYEGrxKNwk+uLPyPS06JL2zhjo+I5QivXAZ3j2G4ds9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
63 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
64 |
+
"desired_goal": "[[ 0.1413789 0.0637208 0.24988425]\n [ 0.01857108 -0.00940045 0.13399997]\n [ 0.11850685 -0.04009454 0.18215446]\n [-0.03969206 0.10844696 0.10736375]]",
|
65 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
66 |
+
},
|
67 |
+
"_episode_num": 20,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": 0.0,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISYCaWrYWLsCUhpRSlIwBbJRLMowBdJRHQCJRCMPz4Dd1fZQoaAZoCWgPQwjekEYFToYowJSGlFKUaBVLMmgWR0AiFCMxXXAedX2UKGgGaAloD0MIxy5RvTVoJsCUhpRSlGgVSzJoFkdAIdsMiKR+0HV9lChoBmgJaA9DCPbsuUxNQiTAlIaUUpRoFUsyaBZHQCGfUe+23KB1fZQoaAZoCWgPQwh00ZDxKOUcwJSGlFKUaBVLMmgWR0AmBHzYmLLqdX2UKGgGaAloD0MI/irAd5tnHsCUhpRSlGgVSzJoFkdAJcbkwN9YwXV9lChoBmgJaA9DCJW2uMZnZjDAlIaUUpRoFUsyaBZHQCWLeIl+mWN1fZQoaAZoCWgPQwhKQiJt4wcnwJSGlFKUaBVLMmgWR0AlTW+XZ5AydX2UKGgGaAloD0MIkfP+P06IF8CUhpRSlGgVSzJoFkdAKE60IC2c8XV9lChoBmgJaA9DCFlPrb66+h/AlIaUUpRoFUsyaBZHQCgQ9RrJr+J1fZQoaAZoCWgPQwhlw5rKoigswJSGlFKUaBVLMmgWR0An1TBInSfEdX2UKGgGaAloD0MINdQoJJkdI8CUhpRSlGgVSzJoFkdAJ5ddmg8KX3V9lChoBmgJaA9DCN7oYz4giCTAlIaUUpRoFUsyaBZHQCqU052hZhd1fZQoaAZoCWgPQwhszOuIQ8YqwJSGlFKUaBVLMmgWR0AqV0SRKYiQdX2UKGgGaAloD0MI61VkdEDKI8CUhpRSlGgVSzJoFkdAKhycbzbvgHV9lChoBmgJaA9DCLhX5q26divAlIaUUpRoFUsyaBZHQCnfUx20Re11fZQoaAZoCWgPQwiwjuOHSlsswJSGlFKUaBVLMmgWR0As2FqzqrzYdX2UKGgGaAloD0MIQgjIl1ChKcCUhpRSlGgVSzJoFkdALJqLKmsNlXV9lChoBmgJaA9DCEJ79fHQZyXAlIaUUpRoFUsyaBZHQCxenIhhYvF1fZQoaAZoCWgPQwj4wfnUsbImwJSGlFKUaBVLMmgWR0AsIKpDNQj2dWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWV0wIAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUZS4="
|
78 |
+
},
|
79 |
+
"_n_updates": 225,
|
80 |
+
"buffer_size": 1000000,
|
81 |
+
"batch_size": 256,
|
82 |
+
"learning_starts": 100,
|
83 |
+
"tau": 0.005,
|
84 |
+
"gamma": 0.99,
|
85 |
+
"gradient_steps": 1,
|
86 |
+
"optimize_memory_usage": false,
|
87 |
+
"replay_buffer_class": {
|
88 |
+
":type:": "<class 'abc.ABCMeta'>",
|
89 |
+
":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
|
90 |
+
"__module__": "stable_baselines3.common.buffers",
|
91 |
+
"__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
92 |
+
"__init__": "<function DictReplayBuffer.__init__ at 0x7f70fffbf4c0>",
|
93 |
+
"add": "<function DictReplayBuffer.add at 0x7f70fffbf550>",
|
94 |
+
"sample": "<function DictReplayBuffer.sample at 0x7f70fffbf5e0>",
|
95 |
+
"_get_samples": "<function DictReplayBuffer._get_samples at 0x7f70fffbf670>",
|
96 |
+
"__abstractmethods__": "frozenset()",
|
97 |
+
"_abc_impl": "<_abc_data object at 0x7f70fffb5c60>"
|
98 |
+
},
|
99 |
+
"replay_buffer_kwargs": {},
|
100 |
+
"train_freq": {
|
101 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
102 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
103 |
+
},
|
104 |
+
"use_sde_at_warmup": false,
|
105 |
+
"target_entropy": -3.0,
|
106 |
+
"ent_coef": "auto",
|
107 |
+
"target_update_interval": 1,
|
108 |
+
"batch_norm_stats": [],
|
109 |
+
"batch_norm_stats_target": []
|
110 |
+
}
|
sac-PandaReachDense-v2/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9598d19672307022f2b76c8f5480be0325d2d993b6d5b3b28558784cb024c379
|
3 |
+
size 1507
|
sac-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ff00b0c781ead9512d3544eed8f32fdbf5596411428e76b36776c371f248f7a
|
3 |
+
size 1416645
|
sac-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2446d61f65e0f7fd13ae5ddbe88ccfb70cf0dff9c1108abf6959d9c8a82f507
|
3 |
+
size 747
|
sac-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24f98b55c8a1b55c2fd39359cd920bc8fff2dbd6ea7e442722507d573cf88f65
|
3 |
+
size 3056
|