baranyalcin commited on
Commit
ee07de1
·
verified ·
1 Parent(s): ea453b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -174
README.md CHANGED
@@ -1,210 +1,129 @@
1
  ---
2
- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit
3
- library_name: peft
4
- pipeline_tag: text-generation
5
  tags:
6
- - base_model:adapter:unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit
7
- - lora
8
- - sft
9
- - transformers
10
- - trl
11
- - unsloth
 
 
12
  ---
13
 
14
- # Model Card for Model ID
15
 
16
- <!-- Provide a quick summary of what the model is/does. -->
17
 
 
18
 
 
 
 
 
 
 
 
 
19
 
20
  ## Model Details
21
 
22
- ### Model Description
23
-
24
- <!-- Provide a longer summary of what this model is. -->
25
-
26
-
27
-
28
- - **Developed by:** [More Information Needed]
29
- - **Funded by [optional]:** [More Information Needed]
30
- - **Shared by [optional]:** [More Information Needed]
31
- - **Model type:** [More Information Needed]
32
- - **Language(s) (NLP):** [More Information Needed]
33
- - **License:** [More Information Needed]
34
- - **Finetuned from model [optional]:** [More Information Needed]
35
-
36
- ### Model Sources [optional]
37
-
38
- <!-- Provide the basic links for the model. -->
39
-
40
- - **Repository:** [More Information Needed]
41
- - **Paper [optional]:** [More Information Needed]
42
- - **Demo [optional]:** [More Information Needed]
43
-
44
- ## Uses
45
-
46
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
47
-
48
- ### Direct Use
49
-
50
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
51
-
52
- [More Information Needed]
53
-
54
- ### Downstream Use [optional]
55
-
56
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
57
-
58
- [More Information Needed]
59
-
60
- ### Out-of-Scope Use
61
-
62
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
63
-
64
- [More Information Needed]
65
-
66
- ## Bias, Risks, and Limitations
67
-
68
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
69
-
70
- [More Information Needed]
71
-
72
- ### Recommendations
73
-
74
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
75
-
76
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
77
-
78
- ## How to Get Started with the Model
79
-
80
- Use the code below to get started with the model.
81
-
82
- [More Information Needed]
83
-
84
- ## Training Details
85
-
86
- ### Training Data
87
-
88
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
89
-
90
- [More Information Needed]
91
-
92
- ### Training Procedure
93
 
94
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
95
 
96
- #### Preprocessing [optional]
 
 
97
 
98
- [More Information Needed]
 
 
 
 
99
 
 
 
 
 
 
100
 
101
- #### Training Hyperparameters
 
 
102
 
103
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
104
 
105
- #### Speeds, Sizes, Times [optional]
 
 
106
 
107
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
108
 
109
- [More Information Needed]
 
 
 
 
 
 
110
 
111
  ## Evaluation
112
 
113
- <!-- This section describes the evaluation protocols and provides the results. -->
114
-
115
- ### Testing Data, Factors & Metrics
116
-
117
- #### Testing Data
118
-
119
- <!-- This should link to a Dataset Card if possible. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Factors
124
-
125
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
126
-
127
- [More Information Needed]
128
-
129
- #### Metrics
130
-
131
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
132
-
133
- [More Information Needed]
134
-
135
- ### Results
136
-
137
- [More Information Needed]
138
-
139
- #### Summary
140
-
141
-
142
-
143
- ## Model Examination [optional]
144
-
145
- <!-- Relevant interpretability work for the model goes here -->
146
-
147
- [More Information Needed]
148
-
149
- ## Environmental Impact
150
-
151
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
152
-
153
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
154
-
155
- - **Hardware Type:** [More Information Needed]
156
- - **Hours used:** [More Information Needed]
157
- - **Cloud Provider:** [More Information Needed]
158
- - **Compute Region:** [More Information Needed]
159
- - **Carbon Emitted:** [More Information Needed]
160
-
161
- ## Technical Specifications [optional]
162
-
163
- ### Model Architecture and Objective
164
-
165
- [More Information Needed]
166
-
167
- ### Compute Infrastructure
168
-
169
- [More Information Needed]
170
-
171
- #### Hardware
172
-
173
- [More Information Needed]
174
-
175
- #### Software
176
-
177
- [More Information Needed]
178
-
179
- ## Citation [optional]
180
-
181
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
182
 
183
- **BibTeX:**
184
 
185
- [More Information Needed]
186
 
187
- **APA:**
 
188
 
189
- [More Information Needed]
 
 
190
 
191
- ## Glossary [optional]
 
192
 
193
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
194
 
195
- [More Information Needed]
 
196
 
197
- ## More Information [optional]
198
 
199
- [More Information Needed]
 
 
 
200
 
201
- ## Model Card Authors [optional]
202
 
203
- [More Information Needed]
 
 
 
204
 
205
- ## Model Card Contact
206
 
207
- [More Information Needed]
208
- ### Framework versions
 
 
 
 
 
 
209
 
210
- - PEFT 0.16.0
 
1
  ---
2
+ license: apache-2.0
 
 
3
  tags:
4
+ - text-to-sql
5
+ - llama3
6
+ - lora
7
+ - sql-generation
8
+ - code-generation
9
+ library_name: transformers
10
+ base_model: unsloth/Meta-Llama-3.1-8B
11
+ pipeline_tag: text-generation
12
  ---
13
 
14
+ # Llama3 SQL Translator
15
 
16
+ **Llama3 SQL Translator** is a LoRA fine-tuned version of the 8B parameter Llama 3.1 model. It is designed to translate natural language database queries into executable SQL statements and provide human-readable explanations. The model streamlines query generation for structured databases and enables non-technical users to interact with relational data more effectively.
17
 
18
+ ## Table of Contents
19
 
20
+ 1. [Model Details](#model-details)
21
+ 2. [Intended Uses](#intended-uses)
22
+ 3. [Limitations & Warnings](#limitations--warnings)
23
+ 4. [Training Overview](#training-overview)
24
+ 5. [Evaluation](#evaluation)
25
+ 6. [Usage Example](#usage-example)
26
+ 7. [Technical Specifications](#technical-specifications)
27
+ 8. [Citation & Contact](#citation--contact)
28
 
29
  ## Model Details
30
 
31
+ - **Model Type:** Causal language model
32
+ - **Architecture:** Llama 3.1 (8B parameters)
33
+ - **Fine-Tuning Method:** Parameter-efficient fine-tuning (LoRA)
34
+ - **Base Model:** unsloth/Meta-Llama-3.1-8B
35
+ - **Language:** English
36
+ - **Tokenizer:** Llama 3 tokenizer (compatible with Meta's original)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ ## Intended Uses
39
 
40
+ ### Primary Use
41
+ - Translating natural language prompts into valid SQL queries.
42
+ - Providing explanations of the generated SQL logic.
43
 
44
+ ### Example Input
45
+ ```text
46
+ Database schema: CREATE TABLE employees (id INT, name TEXT, salary FLOAT);
47
+ Prompt: List all employees with salary over 50000.
48
+ ```
49
 
50
+ ### Example Output
51
+ ```text
52
+ SQL: SELECT name FROM employees WHERE salary > 50000;
53
+ Explanation: This query retrieves all employee names where the salary is greater than 50000.
54
+ ```
55
 
56
+ ### Not Intended For
57
+ - General chat, Q&A, or non-database related tasks.
58
+ - Use without human review in critical systems or production databases.
59
 
60
+ ## Limitations & Warnings
61
 
62
+ - **Schema Dependency:** The model relies heavily on accurate and complete schema descriptions.
63
+ - **SQL Safety:** The output SQL should not be executed without manual validation. Injection risks must be mitigated.
64
+ - **Complex Queries:** Deeply nested subqueries, advanced joins, or vendor-specific SQL dialects may produce suboptimal results.
65
 
66
+ ## Training Overview
67
 
68
+ - The model was trained on a large-scale synthetic dataset containing pairs of natural language instructions, database schemas, corresponding SQL queries, and their step-by-step explanations. The dataset covers a wide range of relational data scenarios and query types, including filtering, aggregation, joins, and nested logic.
69
+ - Fine-tuned on a single A100 GPU using:
70
+ - `max_seq_length=1024`
71
+ - `batch_size=2`, `gradient_accumulation_steps=2`
72
+ - LoRA with 4-bit quantization
73
+ - `packing=True` to maximize throughput
74
+ - Trained for 1 epoch (~5 hours)
75
 
76
  ## Evaluation
77
 
78
+ | Metric | Result |
79
+ |-------------------------|----------------|
80
+ | SQL compilation success | > 95% |
81
+ | Manual output quality | ~90%+ |
82
+ | Explanation clarity | High |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
+ *Note: Evaluation was based on random sampling and manual review. Formal benchmarks will be added later.*
85
 
86
+ ## Usage Example
87
 
88
+ ```python
89
+ from transformers import AutoTokenizer, AutoModelForCausalLM
90
 
91
+ model_id = "happyhackingspace/llama3-sql-translator"
92
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
93
+ model = AutoModelForCausalLM.from_pretrained(model_id)
94
 
95
+ prompt = """Below is an instruction that describes a task, paired with an input that provides further context.
96
+ Write a response that appropriately completes the request.
97
 
98
+ ### Instruction
99
+ Database schema: CREATE TABLE sales (id INT, product TEXT, price FLOAT);
100
 
101
+ ### Input:
102
+ Prompt: Show all products priced over 100.
103
 
104
+ ### Response:"""
105
 
106
+ inputs = tokenizer(prompt, return_tensors="pt")
107
+ outputs = model.generate(**inputs, max_new_tokens=256)
108
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
109
+ ```
110
 
111
+ ## Technical Specifications
112
 
113
+ - **Architecture:** Llama 3.1 - 8B
114
+ - **Quantization:** 4-bit via bitsandbytes
115
+ - **Fine-tuning:** LoRA
116
+ - **Frameworks:** Transformers, TRL, PEFT, Unsloth
117
 
118
+ ## Citation & Contact
119
 
120
+ ```bibtex
121
+ @misc{llama3_sql_translator_2025,
122
+ title = {Llama3 SQL Translator},
123
+ author = {happyhackingspace},
124
+ year = {2025},
125
+ howpublished = {\url{https://huggingface.co/happyhackingspace/llama3-sql-translator}}
126
+ }
127
+ ```
128
 
129
+ **Contact:** For questions or contributions, feel free to open an issue on the Hugging Face model page.