File size: 12,497 Bytes
385f65d
95dfa6c
 
385f65d
95dfa6c
 
 
385f65d
 
95dfa6c
 
 
 
 
 
 
 
 
 
 
 
 
385f65d
95dfa6c
 
 
 
 
 
 
 
385f65d
95dfa6c
385f65d
 
95dfa6c
 
 
 
 
385f65d
 
 
 
 
95dfa6c
 
385f65d
 
 
 
 
 
 
 
 
 
 
 
95dfa6c
 
 
 
 
385f65d
 
 
 
 
95dfa6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385f65d
 
 
 
95dfa6c
 
 
 
 
 
 
 
 
 
 
 
385f65d
95dfa6c
 
 
 
 
 
 
 
 
 
 
385f65d
95dfa6c
 
 
 
 
 
 
385f65d
95dfa6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385f65d
95dfa6c
 
 
 
385f65d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95dfa6c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import random
from rknnlite.api.rknn_lite import RKNNLite
from transformers import AutoProcessor
from PIL import Image, ImageDraw
import numpy as np
import onnxruntime as ort
import time
import matplotlib.pyplot as plt  
import matplotlib.patches as patches  
# set current working directory to the directory of this file
import os
os.chdir(os.path.dirname(os.path.abspath(__file__)))

# 初始化总时间计数器
total_time = 0

# Initialize RKNNLite instances
rknn_vision_encoder = RKNNLite(verbose=False)
rknn_encoder = RKNNLite(verbose=False)
rknn_decoder_prefill = RKNNLite(verbose=False)

# Load RKNN models
ret = rknn_vision_encoder.load_rknn('./vision_encoder_part2.rknn')
ret = rknn_encoder.load_rknn('./encoder_model.rknn')
ret = rknn_decoder_prefill.load_rknn('./decoder_model.rknn')

# Init runtime environment for each model
ret = rknn_vision_encoder.init_runtime()
ret = rknn_encoder.init_runtime()
ret = rknn_decoder_prefill.init_runtime()

text_embed = ort.InferenceSession("embed_tokens_fp16.onnx", providers=['CPUExecutionProvider'])
decoder_decode = ort.InferenceSession("decoder_model_merged_q4.onnx", providers=['CPUExecutionProvider'])
vision_encoder = ort.InferenceSession("vision_encoder_part1.onnx", providers=['CPUExecutionProvider'])
prompt_tokens_list = [15, 17, 21, 25]

# 1. prepare inputs
processor = AutoProcessor.from_pretrained("/home/firefly/mnt/zt-rk3588-nn/expr/Florence-2-base-ft", trust_remote_code=True)

# 2. prepare image
image = Image.open("./test.jpg")
original_image = image.copy()
original_size = image.size
# resize image to 768x768
image = image.resize((768, 768))
# 3. prepare text
prompt = "<MORE_DETAILED_CAPTION>"

## try tokenize first
input_tokens_len = processor.tokenizer(prompt, return_tensors="np")["input_ids"].shape[1]
print("input_tokens_len: ", input_tokens_len)
## select the closest greater value
pad_to = 0
for i in prompt_tokens_list:
    if i >= input_tokens_len:
        pad_to = i
        break
print("pad_to: ", pad_to)
inputs = processor(text=prompt, images=image, return_tensors="np", do_resize=False, padding="max_length", max_length=pad_to + 577, truncation=True)
for k, v in inputs.items():
    print(k, v.shape)

# 4. run vision encoder using RKNN
start_time = time.time()
image_features0 = vision_encoder.run(None, {
    "pixel_values": inputs["pixel_values"]
})[0]
image_features = rknn_vision_encoder.inference(inputs=[image_features0.reshape(1, 128, 1, 36864)])[0]

end_time = time.time()
vision_encoder_time = (end_time - start_time) * 1000
total_time += vision_encoder_time
print(f"Vision encoder time: {vision_encoder_time:.2f} ms")
print(image_features.shape)
np.save("image_features.npy", image_features)

# 5. run text embed using RKNN
start_time = time.time()
inputs_embeds = text_embed.run(None, {
    "input_ids": inputs["input_ids"]
})[0]
end_time = time.time()
text_embed_time = (end_time - start_time) * 1000
total_time += text_embed_time
print(f"Text embed time: {text_embed_time:.2f} ms")
print(inputs_embeds.shape)

# 6. concat image features and text embed
batch_size, image_token_length = image_features.shape[:-1]
image_attention_mask = np.ones((batch_size, image_token_length))
task_prefix_embeds = inputs_embeds
task_prefix_attention_mask = np.ones((batch_size, task_prefix_embeds.shape[1]))
if len(task_prefix_attention_mask.shape) == 3:
    task_prefix_attention_mask = task_prefix_attention_mask[:, 0]
inputs_embeds = np.concatenate([image_features, task_prefix_embeds], axis=1)
attention_mask = np.concatenate([image_attention_mask, task_prefix_attention_mask], axis=1)

# 6. run encoder using RKNN
start_time = time.time()
encoder_out = rknn_encoder.inference(inputs=[attention_mask.astype(np.int64),inputs_embeds])
end_time = time.time()
encoder_time = (end_time - start_time) * 1000
total_time += encoder_time
print(f"Encoder time: {encoder_time:.2f} ms")
encoder_hidden_states = encoder_out[0]
print(encoder_hidden_states.shape)

# 7. run decoder prefill stage using RKNN
start_time = time.time()
next_token = processor.tokenizer.bos_token_id
next_input_embeds = text_embed.run(None, {
    "input_ids": np.array([[next_token]], dtype=np.int64)
})[0]
decoder_outs = rknn_decoder_prefill.inference(inputs=[attention_mask.astype(np.int64), encoder_hidden_states,inputs_embeds[:, -1:]])
end_time = time.time()
decoder_prefill_time = (end_time - start_time) * 1000
total_time += decoder_prefill_time
print(f"Decoder prefill time: {decoder_prefill_time:.2f} ms")
# for output in decoder_outs:
#     print(output.shape)

encoder_kv = decoder_outs[1:]

# 8. run decoder decode stage(autoregressive) (using onnxruntime)
generated_tokens = []
max_new_tokens = 512
decoder_decode_total_time = 0
while generated_tokens.__len__() < max_new_tokens:
    # 获取上一步的输出
    logits = decoder_outs[0]
    decoder_kv = decoder_outs[1:]
    
    # 选择最后一个token的logits
    next_token_logits = logits[:, -1, :]
    
    # 使用argmax选择下一个token (贪心算法)
    next_token = np.argmax(next_token_logits, axis=-1)[0]
    print("next_token: ", next_token)
    # 将新生成的token添加到结果中
    generated_tokens.append(next_token)

    # 如果生成了结束符,则停止生成
    if next_token == 2: # </s>
        break
    
    #  准备下一步的输入
    start_time = time.time()
    next_input_embeds = text_embed.run(None, {
        "input_ids": np.array([[next_token]], dtype=np.int64)
    })[0]
    end_time = time.time()
    text_embed_time = (end_time - start_time) * 1000
    decoder_decode_total_time += text_embed_time

    # 运行decoder的decode阶段
    start_time = time.time()
    decoder_outs = decoder_decode.run(None, {
        "use_cache_branch": np.array([True], dtype=np.bool_),
        "inputs_embeds": next_input_embeds,
        "encoder_hidden_states": encoder_hidden_states,
        "encoder_attention_mask": attention_mask.astype(np.int64),
        "past_key_values.0.decoder.key": decoder_kv[0],
        "past_key_values.0.decoder.value": decoder_kv[1],
        "past_key_values.0.encoder.key": encoder_kv[2],
        "past_key_values.0.encoder.value": encoder_kv[3],
        "past_key_values.1.decoder.key": decoder_kv[4],
        "past_key_values.1.decoder.value": decoder_kv[5],
        "past_key_values.1.encoder.key": encoder_kv[6],
        "past_key_values.1.encoder.value": encoder_kv[7],
        "past_key_values.2.decoder.key": decoder_kv[8],
        "past_key_values.2.decoder.value": decoder_kv[9],
        "past_key_values.2.encoder.key": encoder_kv[10],
        "past_key_values.2.encoder.value": encoder_kv[11],
        "past_key_values.3.decoder.key": decoder_kv[12],
        "past_key_values.3.decoder.value": decoder_kv[13],
        "past_key_values.3.encoder.key": encoder_kv[14],
        "past_key_values.3.encoder.value": encoder_kv[15],
        "past_key_values.4.decoder.key": decoder_kv[16],
        "past_key_values.4.decoder.value": decoder_kv[17],
        "past_key_values.4.encoder.key": encoder_kv[18],
        "past_key_values.4.encoder.value": encoder_kv[19],
        "past_key_values.5.decoder.key": decoder_kv[20],
        "past_key_values.5.decoder.value": decoder_kv[21],
        "past_key_values.5.encoder.key": encoder_kv[22],
        "past_key_values.5.encoder.value": encoder_kv[23],
    })
    end_time = time.time()
    decoder_decode_time = (end_time - start_time) * 1000
    decoder_decode_total_time += decoder_decode_time

total_time += decoder_decode_total_time
print(f"Decoder decode total time: {decoder_decode_total_time:.2f} ms")

# 将生成的tokens转换为文本
print("generated_tokens: ", generated_tokens)
generated_text = processor.batch_decode([generated_tokens], skip_special_tokens=False)[0]
print("Generated Text:", generated_text)
parsed_answer = processor.post_process_generation(generated_text, task=prompt.split(">")[0].strip() + ">", image_size=original_size)
print("Parsed Answer:", parsed_answer)

print(f"Total inference time: {total_time:.2f} ms")

# postprocess
from PIL import Image, ImageDraw, ImageFont

from PIL import Image, ImageDraw, ImageFont

def plot_bbox(image, data):
    # Convert the image to a PIL Image if it's not already
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    # Create a drawing context
    draw = ImageDraw.Draw(image)
    
    # Load a larger font
    try:
        font = ImageFont.truetype("arial.ttf", 20)  # 尝试加载Arial字体,大小为20
    except IOError:
        font = ImageFont.load_default().font_variant(size=20)  # 如果Arial不可用,使用默认字体并放大
    
    # Plot each bounding box
    for bbox, label in zip(data['bboxes'], data['labels']):
        # Unpack the bounding box coordinates
        x1, y1, x2, y2 = bbox
        # Draw the rectangle with thicker outline
        draw.rectangle([x1, y1, x2, y2], outline="red", width=3)  # 增加线条宽度到3
        
        # Annotate the label
        left, top, right, bottom = font.getbbox(label)
        text_width = right - left
        text_height = bottom - top
        
        # 增加文本背景框的大小
        padding = 5
        draw.rectangle([x1, y1 - text_height - padding*2, x1 + text_width + padding*2, y1], fill="red")
        draw.text((x1 + padding, y1 - text_height - padding), label, fill="white", font=font)
  
    # Save the image
    image.save("result_image.jpg")

colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
            'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']

def draw_polygons(image, prediction, fill_mask=False):  
    """  
    Draws segmentation masks with polygons on an image.  
  
    Parameters:  
    - image_path: Path to the image file.  
    - prediction: Dictionary containing 'polygons' and 'labels' keys.  
                  'polygons' is a list of lists, each containing vertices of a polygon.  
                  'labels' is a list of labels corresponding to each polygon.  
    - fill_mask: Boolean indicating whether to fill the polygons with color.  
    """  
    # Load the image  
   
    draw = ImageDraw.Draw(image)  
      
   
    # Set up scale factor if needed (use 1 if not scaling)  
    scale = 1  
      
    # Iterate over polygons and labels  
    for polygons, label in zip(prediction['polygons'], prediction['labels']):  
        color = random.choice(colormap)  
        fill_color = random.choice(colormap) if fill_mask else None  
          
        for _polygon in polygons:  
            _polygon = np.array(_polygon).reshape(-1, 2)  
            if len(_polygon) < 3:  
                print('Invalid polygon:', _polygon)  
                continue  
              
            _polygon = (_polygon * scale).reshape(-1).tolist()  
              
            # Draw the polygon  
            if fill_mask:  
                draw.polygon(_polygon, outline=color, fill=fill_color)  
            else:  
                draw.polygon(_polygon, outline=color)  
              
            # Draw the label text  
            draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)  
  
    # Save or display the image  
    # image.show()  # Display the image  
    # display(image)
    image.save("result_image.jpg")



def draw_ocr_bboxes(image, prediction, scale=1):
    draw = ImageDraw.Draw(image)
        
    # Load a larger font
    try:
        font = ImageFont.truetype("arial.ttf", 18)  # 尝试加载Arial字体,大小为18
    except IOError:
        font = ImageFont.load_default().font_variant(size=18)  # 如果Arial不可用,使用默认字体并放大
    bboxes, labels = prediction['quad_boxes'], prediction['labels']
    for box, label in zip(bboxes, labels):
        color = random.choice(colormap)
        new_box = (np.array(box) * scale).tolist()
        draw.polygon(new_box, width=3, outline=color)
        draw.text((new_box[0]+8, new_box[1]+2),
                    "{}".format(label),
                    align="right",
        
                    fill=color)
       
    # display(image)
    image.save("result_image.jpg")


# draw_polygons(original_image, parsed_answer['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
# plot_bbox(original_image, parsed_answer[prompt.split(">")[0].strip() + ">"])
# draw_ocr_bboxes(original_image, parsed_answer["<OCR_WITH_REGION>"], scale=1)



# Release RKNNLite instances
rknn_vision_encoder.release()
rknn_encoder.release()
rknn_decoder_prefill.release()