happyme531
commited on
Delete rknnrun.py
Browse files- rknnrun.py +0 -325
rknnrun.py
DELETED
@@ -1,325 +0,0 @@
|
|
1 |
-
import random
|
2 |
-
from rknnlite.api.rknn_lite import RKNNLite
|
3 |
-
from transformers import AutoProcessor
|
4 |
-
from PIL import Image, ImageDraw
|
5 |
-
import numpy as np
|
6 |
-
import onnxruntime as ort
|
7 |
-
import time
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
import matplotlib.patches as patches
|
10 |
-
# set current working directory to the directory of this file
|
11 |
-
import os
|
12 |
-
os.chdir(os.path.dirname(os.path.abspath(__file__)))
|
13 |
-
|
14 |
-
# 初始化总时间计数器
|
15 |
-
total_time = 0
|
16 |
-
|
17 |
-
# Initialize RKNNLite instances
|
18 |
-
rknn_vision_encoder = RKNNLite(verbose=False)
|
19 |
-
rknn_encoder = RKNNLite(verbose=False)
|
20 |
-
rknn_decoder_prefill = RKNNLite(verbose=False)
|
21 |
-
|
22 |
-
# Load RKNN models
|
23 |
-
ret = rknn_vision_encoder.load_rknn('./vision_encoder_part2.rknn')
|
24 |
-
ret = rknn_encoder.load_rknn('./encoder_model.rknn')
|
25 |
-
ret = rknn_decoder_prefill.load_rknn('./decoder_model.rknn')
|
26 |
-
|
27 |
-
# Init runtime environment for each model
|
28 |
-
ret = rknn_vision_encoder.init_runtime()
|
29 |
-
ret = rknn_encoder.init_runtime()
|
30 |
-
ret = rknn_decoder_prefill.init_runtime()
|
31 |
-
|
32 |
-
text_embed = ort.InferenceSession("embed_tokens_fp16.onnx", providers=['CPUExecutionProvider'])
|
33 |
-
decoder_decode = ort.InferenceSession("decoder_model_merged_q4.onnx", providers=['CPUExecutionProvider'])
|
34 |
-
vision_encoder = ort.InferenceSession("vision_encoder_part1.onnx", providers=['CPUExecutionProvider'])
|
35 |
-
prompt_tokens_list = [15, 17, 21, 25]
|
36 |
-
|
37 |
-
# 1. prepare inputs
|
38 |
-
processor = AutoProcessor.from_pretrained("/home/firefly/mnt/zt-rk3588-nn/expr/Florence-2-base-ft", trust_remote_code=True)
|
39 |
-
|
40 |
-
# 2. prepare image
|
41 |
-
image = Image.open("./test.jpg")
|
42 |
-
original_image = image.copy()
|
43 |
-
original_size = image.size
|
44 |
-
# resize image to 768x768
|
45 |
-
image = image.resize((768, 768))
|
46 |
-
# 3. prepare text
|
47 |
-
prompt = "<MORE_DETAILED_CAPTION>"
|
48 |
-
|
49 |
-
## try tokenize first
|
50 |
-
input_tokens_len = processor.tokenizer(prompt, return_tensors="np")["input_ids"].shape[1]
|
51 |
-
print("input_tokens_len: ", input_tokens_len)
|
52 |
-
## select the closest greater value
|
53 |
-
pad_to = 0
|
54 |
-
for i in prompt_tokens_list:
|
55 |
-
if i >= input_tokens_len:
|
56 |
-
pad_to = i
|
57 |
-
break
|
58 |
-
print("pad_to: ", pad_to)
|
59 |
-
inputs = processor(text=prompt, images=image, return_tensors="np", do_resize=False, padding="max_length", max_length=pad_to + 577, truncation=True)
|
60 |
-
for k, v in inputs.items():
|
61 |
-
print(k, v.shape)
|
62 |
-
|
63 |
-
# 4. run vision encoder using RKNN
|
64 |
-
start_time = time.time()
|
65 |
-
image_features0 = vision_encoder.run(None, {
|
66 |
-
"pixel_values": inputs["pixel_values"]
|
67 |
-
})[0]
|
68 |
-
image_features = rknn_vision_encoder.inference(inputs=[image_features0.reshape(1, 128, 1, 36864)])[0]
|
69 |
-
|
70 |
-
end_time = time.time()
|
71 |
-
vision_encoder_time = (end_time - start_time) * 1000
|
72 |
-
total_time += vision_encoder_time
|
73 |
-
print(f"Vision encoder time: {vision_encoder_time:.2f} ms")
|
74 |
-
print(image_features.shape)
|
75 |
-
np.save("image_features.npy", image_features)
|
76 |
-
|
77 |
-
# 5. run text embed using RKNN
|
78 |
-
start_time = time.time()
|
79 |
-
inputs_embeds = text_embed.run(None, {
|
80 |
-
"input_ids": inputs["input_ids"]
|
81 |
-
})[0]
|
82 |
-
end_time = time.time()
|
83 |
-
text_embed_time = (end_time - start_time) * 1000
|
84 |
-
total_time += text_embed_time
|
85 |
-
print(f"Text embed time: {text_embed_time:.2f} ms")
|
86 |
-
print(inputs_embeds.shape)
|
87 |
-
|
88 |
-
# 6. concat image features and text embed
|
89 |
-
batch_size, image_token_length = image_features.shape[:-1]
|
90 |
-
image_attention_mask = np.ones((batch_size, image_token_length))
|
91 |
-
task_prefix_embeds = inputs_embeds
|
92 |
-
task_prefix_attention_mask = np.ones((batch_size, task_prefix_embeds.shape[1]))
|
93 |
-
if len(task_prefix_attention_mask.shape) == 3:
|
94 |
-
task_prefix_attention_mask = task_prefix_attention_mask[:, 0]
|
95 |
-
inputs_embeds = np.concatenate([image_features, task_prefix_embeds], axis=1)
|
96 |
-
attention_mask = np.concatenate([image_attention_mask, task_prefix_attention_mask], axis=1)
|
97 |
-
|
98 |
-
# 6. run encoder using RKNN
|
99 |
-
start_time = time.time()
|
100 |
-
encoder_out = rknn_encoder.inference(inputs=[attention_mask.astype(np.int64),inputs_embeds])
|
101 |
-
end_time = time.time()
|
102 |
-
encoder_time = (end_time - start_time) * 1000
|
103 |
-
total_time += encoder_time
|
104 |
-
print(f"Encoder time: {encoder_time:.2f} ms")
|
105 |
-
encoder_hidden_states = encoder_out[0]
|
106 |
-
print(encoder_hidden_states.shape)
|
107 |
-
|
108 |
-
# 7. run decoder prefill stage using RKNN
|
109 |
-
start_time = time.time()
|
110 |
-
next_token = processor.tokenizer.bos_token_id
|
111 |
-
next_input_embeds = text_embed.run(None, {
|
112 |
-
"input_ids": np.array([[next_token]], dtype=np.int64)
|
113 |
-
})[0]
|
114 |
-
decoder_outs = rknn_decoder_prefill.inference(inputs=[attention_mask.astype(np.int64), encoder_hidden_states,inputs_embeds[:, -1:]])
|
115 |
-
end_time = time.time()
|
116 |
-
decoder_prefill_time = (end_time - start_time) * 1000
|
117 |
-
total_time += decoder_prefill_time
|
118 |
-
print(f"Decoder prefill time: {decoder_prefill_time:.2f} ms")
|
119 |
-
# for output in decoder_outs:
|
120 |
-
# print(output.shape)
|
121 |
-
|
122 |
-
encoder_kv = decoder_outs[1:]
|
123 |
-
|
124 |
-
# 8. run decoder decode stage(autoregressive) (using onnxruntime)
|
125 |
-
generated_tokens = []
|
126 |
-
max_new_tokens = 512
|
127 |
-
decoder_decode_total_time = 0
|
128 |
-
while generated_tokens.__len__() < max_new_tokens:
|
129 |
-
# 获取上一步的输出
|
130 |
-
logits = decoder_outs[0]
|
131 |
-
decoder_kv = decoder_outs[1:]
|
132 |
-
|
133 |
-
# 选择最后一个token的logits
|
134 |
-
next_token_logits = logits[:, -1, :]
|
135 |
-
|
136 |
-
# 使用argmax选择下一个token (贪心算法)
|
137 |
-
next_token = np.argmax(next_token_logits, axis=-1)[0]
|
138 |
-
print("next_token: ", next_token)
|
139 |
-
# 将新生成的token添加到结果中
|
140 |
-
generated_tokens.append(next_token)
|
141 |
-
|
142 |
-
# 如果生成了结束符,则停止生成
|
143 |
-
if next_token == 2: # </s>
|
144 |
-
break
|
145 |
-
|
146 |
-
# 准备下一步的输入
|
147 |
-
start_time = time.time()
|
148 |
-
next_input_embeds = text_embed.run(None, {
|
149 |
-
"input_ids": np.array([[next_token]], dtype=np.int64)
|
150 |
-
})[0]
|
151 |
-
end_time = time.time()
|
152 |
-
text_embed_time = (end_time - start_time) * 1000
|
153 |
-
decoder_decode_total_time += text_embed_time
|
154 |
-
|
155 |
-
# 运行decoder的decode阶段
|
156 |
-
start_time = time.time()
|
157 |
-
decoder_outs = decoder_decode.run(None, {
|
158 |
-
"use_cache_branch": np.array([True], dtype=np.bool_),
|
159 |
-
"inputs_embeds": next_input_embeds,
|
160 |
-
"encoder_hidden_states": encoder_hidden_states,
|
161 |
-
"encoder_attention_mask": attention_mask.astype(np.int64),
|
162 |
-
"past_key_values.0.decoder.key": decoder_kv[0],
|
163 |
-
"past_key_values.0.decoder.value": decoder_kv[1],
|
164 |
-
"past_key_values.0.encoder.key": encoder_kv[2],
|
165 |
-
"past_key_values.0.encoder.value": encoder_kv[3],
|
166 |
-
"past_key_values.1.decoder.key": decoder_kv[4],
|
167 |
-
"past_key_values.1.decoder.value": decoder_kv[5],
|
168 |
-
"past_key_values.1.encoder.key": encoder_kv[6],
|
169 |
-
"past_key_values.1.encoder.value": encoder_kv[7],
|
170 |
-
"past_key_values.2.decoder.key": decoder_kv[8],
|
171 |
-
"past_key_values.2.decoder.value": decoder_kv[9],
|
172 |
-
"past_key_values.2.encoder.key": encoder_kv[10],
|
173 |
-
"past_key_values.2.encoder.value": encoder_kv[11],
|
174 |
-
"past_key_values.3.decoder.key": decoder_kv[12],
|
175 |
-
"past_key_values.3.decoder.value": decoder_kv[13],
|
176 |
-
"past_key_values.3.encoder.key": encoder_kv[14],
|
177 |
-
"past_key_values.3.encoder.value": encoder_kv[15],
|
178 |
-
"past_key_values.4.decoder.key": decoder_kv[16],
|
179 |
-
"past_key_values.4.decoder.value": decoder_kv[17],
|
180 |
-
"past_key_values.4.encoder.key": encoder_kv[18],
|
181 |
-
"past_key_values.4.encoder.value": encoder_kv[19],
|
182 |
-
"past_key_values.5.decoder.key": decoder_kv[20],
|
183 |
-
"past_key_values.5.decoder.value": decoder_kv[21],
|
184 |
-
"past_key_values.5.encoder.key": encoder_kv[22],
|
185 |
-
"past_key_values.5.encoder.value": encoder_kv[23],
|
186 |
-
})
|
187 |
-
end_time = time.time()
|
188 |
-
decoder_decode_time = (end_time - start_time) * 1000
|
189 |
-
decoder_decode_total_time += decoder_decode_time
|
190 |
-
|
191 |
-
total_time += decoder_decode_total_time
|
192 |
-
print(f"Decoder decode total time: {decoder_decode_total_time:.2f} ms")
|
193 |
-
|
194 |
-
# 将生成的tokens转换为文本
|
195 |
-
print("generated_tokens: ", generated_tokens)
|
196 |
-
generated_text = processor.batch_decode([generated_tokens], skip_special_tokens=False)[0]
|
197 |
-
print("Generated Text:", generated_text)
|
198 |
-
parsed_answer = processor.post_process_generation(generated_text, task=prompt.split(">")[0].strip() + ">", image_size=original_size)
|
199 |
-
print("Parsed Answer:", parsed_answer)
|
200 |
-
|
201 |
-
print(f"Total inference time: {total_time:.2f} ms")
|
202 |
-
|
203 |
-
# postprocess
|
204 |
-
from PIL import Image, ImageDraw, ImageFont
|
205 |
-
|
206 |
-
from PIL import Image, ImageDraw, ImageFont
|
207 |
-
|
208 |
-
def plot_bbox(image, data):
|
209 |
-
# Convert the image to a PIL Image if it's not already
|
210 |
-
if not isinstance(image, Image.Image):
|
211 |
-
image = Image.fromarray(image)
|
212 |
-
|
213 |
-
# Create a drawing context
|
214 |
-
draw = ImageDraw.Draw(image)
|
215 |
-
|
216 |
-
# Load a larger font
|
217 |
-
try:
|
218 |
-
font = ImageFont.truetype("arial.ttf", 20) # 尝试加载Arial字体,大小为20
|
219 |
-
except IOError:
|
220 |
-
font = ImageFont.load_default().font_variant(size=20) # 如果Arial不可用,使用默认字体并放大
|
221 |
-
|
222 |
-
# Plot each bounding box
|
223 |
-
for bbox, label in zip(data['bboxes'], data['labels']):
|
224 |
-
# Unpack the bounding box coordinates
|
225 |
-
x1, y1, x2, y2 = bbox
|
226 |
-
# Draw the rectangle with thicker outline
|
227 |
-
draw.rectangle([x1, y1, x2, y2], outline="red", width=3) # 增加线条宽度到3
|
228 |
-
|
229 |
-
# Annotate the label
|
230 |
-
left, top, right, bottom = font.getbbox(label)
|
231 |
-
text_width = right - left
|
232 |
-
text_height = bottom - top
|
233 |
-
|
234 |
-
# 增加文本背景框的大小
|
235 |
-
padding = 5
|
236 |
-
draw.rectangle([x1, y1 - text_height - padding*2, x1 + text_width + padding*2, y1], fill="red")
|
237 |
-
draw.text((x1 + padding, y1 - text_height - padding), label, fill="white", font=font)
|
238 |
-
|
239 |
-
# Save the image
|
240 |
-
image.save("result_image.jpg")
|
241 |
-
|
242 |
-
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
243 |
-
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
244 |
-
|
245 |
-
def draw_polygons(image, prediction, fill_mask=False):
|
246 |
-
"""
|
247 |
-
Draws segmentation masks with polygons on an image.
|
248 |
-
|
249 |
-
Parameters:
|
250 |
-
- image_path: Path to the image file.
|
251 |
-
- prediction: Dictionary containing 'polygons' and 'labels' keys.
|
252 |
-
'polygons' is a list of lists, each containing vertices of a polygon.
|
253 |
-
'labels' is a list of labels corresponding to each polygon.
|
254 |
-
- fill_mask: Boolean indicating whether to fill the polygons with color.
|
255 |
-
"""
|
256 |
-
# Load the image
|
257 |
-
|
258 |
-
draw = ImageDraw.Draw(image)
|
259 |
-
|
260 |
-
|
261 |
-
# Set up scale factor if needed (use 1 if not scaling)
|
262 |
-
scale = 1
|
263 |
-
|
264 |
-
# Iterate over polygons and labels
|
265 |
-
for polygons, label in zip(prediction['polygons'], prediction['labels']):
|
266 |
-
color = random.choice(colormap)
|
267 |
-
fill_color = random.choice(colormap) if fill_mask else None
|
268 |
-
|
269 |
-
for _polygon in polygons:
|
270 |
-
_polygon = np.array(_polygon).reshape(-1, 2)
|
271 |
-
if len(_polygon) < 3:
|
272 |
-
print('Invalid polygon:', _polygon)
|
273 |
-
continue
|
274 |
-
|
275 |
-
_polygon = (_polygon * scale).reshape(-1).tolist()
|
276 |
-
|
277 |
-
# Draw the polygon
|
278 |
-
if fill_mask:
|
279 |
-
draw.polygon(_polygon, outline=color, fill=fill_color)
|
280 |
-
else:
|
281 |
-
draw.polygon(_polygon, outline=color)
|
282 |
-
|
283 |
-
# Draw the label text
|
284 |
-
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
|
285 |
-
|
286 |
-
# Save or display the image
|
287 |
-
# image.show() # Display the image
|
288 |
-
# display(image)
|
289 |
-
image.save("result_image.jpg")
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
def draw_ocr_bboxes(image, prediction, scale=1):
|
294 |
-
draw = ImageDraw.Draw(image)
|
295 |
-
|
296 |
-
# Load a larger font
|
297 |
-
try:
|
298 |
-
font = ImageFont.truetype("arial.ttf", 18) # 尝试加载Arial字体,大小为18
|
299 |
-
except IOError:
|
300 |
-
font = ImageFont.load_default().font_variant(size=18) # 如果Arial不可用,使用默认字体并放大
|
301 |
-
bboxes, labels = prediction['quad_boxes'], prediction['labels']
|
302 |
-
for box, label in zip(bboxes, labels):
|
303 |
-
color = random.choice(colormap)
|
304 |
-
new_box = (np.array(box) * scale).tolist()
|
305 |
-
draw.polygon(new_box, width=3, outline=color)
|
306 |
-
draw.text((new_box[0]+8, new_box[1]+2),
|
307 |
-
"{}".format(label),
|
308 |
-
align="right",
|
309 |
-
|
310 |
-
fill=color)
|
311 |
-
|
312 |
-
# display(image)
|
313 |
-
image.save("result_image.jpg")
|
314 |
-
|
315 |
-
|
316 |
-
# draw_polygons(original_image, parsed_answer['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
317 |
-
# plot_bbox(original_image, parsed_answer[prompt.split(">")[0].strip() + ">"])
|
318 |
-
# draw_ocr_bboxes(original_image, parsed_answer["<OCR_WITH_REGION>"], scale=1)
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
# Release RKNNLite instances
|
323 |
-
rknn_vision_encoder.release()
|
324 |
-
rknn_encoder.release()
|
325 |
-
rknn_decoder_prefill.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|