File size: 7,452 Bytes
4f934c6 194663d b5976ca 194663d e65e89a 194663d c48fb1e 194663d c48fb1e 194663d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import faulthandler
faulthandler.enable()
import os
import time
import signal
from multiprocessing import Process, Queue, Event
import cv2
import numpy as np
from rkllm_binding import *
from rknnlite.api.rknn_lite import RKNNLite
# 视觉编码器进程
def vision_encoder_process(load_ready_queue, embedding_queue, img_path_queue, start_event):
VISION_ENCODER_PATH = "vision_transformer.rknn"
img_size = 448
# 初始化视觉编码器
vision_encoder = RKNNLite(verbose=False)
model_size = os.path.getsize(VISION_ENCODER_PATH)
print(f"Start loading vision encoder model (size: {model_size / 1024 / 1024:.2f} MB)")
start_time = time.time()
vision_encoder.load_rknn(VISION_ENCODER_PATH)
end_time = time.time()
print(f"Vision encoder loaded in {end_time - start_time:.2f} seconds")
vision_encoder.init_runtime(core_mask=RKNNLite.NPU_CORE_0_1_2)
# 通知主进程加载完成
load_ready_queue.put("vision_ready")
# 等待开始信号
start_event.wait()
def process_image(img_path, vision_encoder):
img = cv2.imread(img_path)
if img is None:
return None
print("Start vision inference...")
img = cv2.resize(img, (img_size, img_size))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img.astype(np.float32)
img = img[np.newaxis, :, :, :]
start_time = time.time()
image_embeddings = vision_encoder.inference(inputs=[img], data_format="nhwc")[0].astype(np.float32)
end_time = time.time()
print(f"Vision encoder inference time: {end_time - start_time:.2f} seconds")
return image_embeddings
while True:
img_path = img_path_queue.get()
if img_path == "STOP":
break
embeddings = process_image(img_path, vision_encoder)
if embeddings is not None:
embedding_queue.put(embeddings)
else:
embedding_queue.put("ERROR")
# LLM进程
def llm_process(load_ready_queue, embedding_queue, prompt_queue, inference_done_queue, start_event):
MODEL_PATH = "qwen.rkllm"
handle = None
def signal_handler(signal, frame):
print("Ctrl-C pressed, exiting...")
global handle
if handle:
abort(handle)
destroy(handle)
exit(0)
signal.signal(signal.SIGINT, signal_handler)
os.environ["RKLLM_LOG_LEVEL"] = "1"
inference_count = 0
inference_start_time = 0
def result_callback(result, userdata, state):
nonlocal inference_start_time, inference_count
if state == LLMCallState.RKLLM_RUN_NORMAL:
if inference_count == 0:
first_token_time = time.time()
print(f"Time to first token: {first_token_time - inference_start_time:.2f} seconds")
inference_count += 1
print(result.contents.text.decode(), end="", flush=True)
elif state == LLMCallState.RKLLM_RUN_FINISH:
print("\n\n(finished)")
inference_done_queue.put("DONE")
elif state == LLMCallState.RKLLM_RUN_ERROR:
print("\nError occurred during LLM call")
inference_done_queue.put("ERROR")
# 初始化LLM
param = create_default_param()
param.model_path = MODEL_PATH.encode()
param.img_start = "<image>".encode()
param.img_end = "</image>".encode()
param.img_content = "<unk>".encode()
extend_param = RKLLMExtendParam()
extend_param.base_domain_id = 1
param.extend_param = extend_param
model_size = os.path.getsize(MODEL_PATH)
print(f"Start loading language model (size: {model_size / 1024 / 1024:.2f} MB)")
start_time = time.time()
handle = init(param, result_callback)
end_time = time.time()
print(f"Language model loaded in {end_time - start_time:.2f} seconds")
# 通知主进程加载完成
load_ready_queue.put("llm_ready")
# 创建推理参数
infer_param = RKLLMInferParam()
infer_param.mode = RKLLMInferMode.RKLLM_INFER_GENERATE.value
while True:
prompt = prompt_queue.get()
# print(f"Received prompt: ====\n{prompt}\n====")
if prompt == "STOP":
break
image_embeddings = embedding_queue.get()
if isinstance(image_embeddings, str) and image_embeddings == "ERROR":
print("Error processing image")
continue
rkllm_input = create_rkllm_input(RKLLMInputType.RKLLM_INPUT_MULTIMODAL,
prompt=prompt,
image_embed=image_embeddings)
inference_start_time = time.time()
run(handle, rkllm_input, infer_param, None)
# 清理
destroy(handle)
def main():
load_ready_queue = Queue()
embedding_queue = Queue()
img_path_queue = Queue()
prompt_queue = Queue()
inference_done_queue = Queue()
start_event = Event()
vision_process = Process(target=vision_encoder_process,
args=(load_ready_queue, embedding_queue, img_path_queue, start_event))
lm_process = Process(target=llm_process,
args=(load_ready_queue, embedding_queue, prompt_queue, inference_done_queue, start_event))
vision_process.start()
lm_process.start()
# 等待模型加载
ready_count = 0
while ready_count < 2:
status = load_ready_queue.get()
print(f"Received ready signal: {status}")
ready_count += 1
print("All models loaded, starting interactive mode...")
start_event.set()
# 交互循环
try:
while True:
print("""
Enter your input (3 empty lines to start inference, Ctrl+C to exit, for example:
详细描述一下{{./test.jpg}}这张图片
What is the weather in {{./test.jpg}}?
How many people are in {{./test.jpg}}?
):
""")
user_input = []
empty_lines = 0
while empty_lines < 3:
line = input()
if line.strip() == "":
empty_lines += 1
else:
empty_lines = 0
user_input.append(line)
# 解析输入
full_input = "\n".join(user_input[:-3]) # 去掉最后3个空行
import re
img_match = re.search(r'\{\{(.+?)\}\}', full_input)
if not img_match:
print("No image path found in input")
continue
img_path = img_match.group(1)
# 将图片标记替换为<image>标记
image_placeholder = '<image_id>0</image_id><image>\n' # 先定义替换文本
prompt = f"""<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
{full_input.replace(img_match.group(0), image_placeholder)}<|im_end|>
<|im_start|>assistant
"""
img_path_queue.put(img_path)
prompt_queue.put(prompt)
# 等待推理完成
status = inference_done_queue.get()
if status == "ERROR":
print("Inference failed")
except KeyboardInterrupt:
print("\nExiting...")
img_path_queue.put("STOP")
prompt_queue.put("STOP")
vision_process.join()
lm_process.join()
if __name__ == "__main__":
main() |