MiniCPM-V-2_6-rkllm / multiprocess_inference.py
happyme531's picture
Update model path
e65e89a verified
raw
history blame
7.28 kB
import os
import time
import signal
from multiprocessing import Process, Queue, Event
import cv2
import numpy as np
from rkllm_binding import *
from rknnlite.api.rknn_lite import RKNNLite
# 视觉编码器进程
def vision_encoder_process(load_ready_queue, embedding_queue, img_path_queue, start_event):
VISION_ENCODER_PATH = "vision_transformer.rknn"
img_size = 448
# 初始化视觉编码器
vision_encoder = RKNNLite(verbose=False)
model_size = os.path.getsize(VISION_ENCODER_PATH)
print(f"Start loading vision encoder model (size: {model_size / 1024 / 1024:.2f} MB)")
start_time = time.time()
vision_encoder.load_rknn(VISION_ENCODER_PATH)
end_time = time.time()
print(f"Vision encoder loaded in {end_time - start_time:.2f} seconds")
vision_encoder.init_runtime()
# 通知主进程加载完成
load_ready_queue.put("vision_ready")
# 等待开始信号
start_event.wait()
def process_image(img_path, vision_encoder):
img = cv2.imread(img_path)
if img is None:
return None
print("Start vision inference...")
img = cv2.resize(img, (img_size, img_size))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img.astype(np.float32)
img = img[np.newaxis, :, :, :]
start_time = time.time()
image_embeddings = vision_encoder.inference(inputs=[img], data_format="nhwc")[0].astype(np.float32)
end_time = time.time()
print(f"Vision encoder inference time: {end_time - start_time:.2f} seconds")
return image_embeddings
while True:
img_path = img_path_queue.get()
if img_path == "STOP":
break
embeddings = process_image(img_path, vision_encoder)
if embeddings is not None:
embedding_queue.put(embeddings)
else:
embedding_queue.put("ERROR")
# LLM进程
def llm_process(load_ready_queue, embedding_queue, prompt_queue, inference_done_queue, start_event):
MODEL_PATH = "qwen.rkllm"
handle = None
def signal_handler(signal, frame):
print("Ctrl-C pressed, exiting...")
global handle
if handle:
abort(handle)
destroy(handle)
exit(0)
signal.signal(signal.SIGINT, signal_handler)
os.environ["RKLLM_LOG_LEVEL"] = "1"
inference_count = 0
inference_start_time = 0
def result_callback(result, userdata, state):
nonlocal inference_start_time, inference_count
if state == LLMCallState.RKLLM_RUN_NORMAL:
if inference_count == 0:
first_token_time = time.time()
print(f"Time to first token: {first_token_time - inference_start_time:.2f} seconds")
inference_count += 1
print(result.contents.text.decode(), end="", flush=True)
elif state == LLMCallState.RKLLM_RUN_FINISH:
print("\n\n(finished)")
inference_done_queue.put("DONE")
elif state == LLMCallState.RKLLM_RUN_ERROR:
print("\nError occurred during LLM call")
inference_done_queue.put("ERROR")
# 初始化LLM
param = create_default_param()
param.model_path = MODEL_PATH.encode()
param.img_start = "<image>".encode()
param.img_end = "</image>".encode()
param.img_content = "<unk>".encode()
extend_param = RKLLMExtendParam()
extend_param.base_domain_id = 1
param.extend_param = extend_param
model_size = os.path.getsize(MODEL_PATH)
print(f"Start loading language model (size: {model_size / 1024 / 1024:.2f} MB)")
start_time = time.time()
handle = init(param, result_callback)
end_time = time.time()
print(f"Language model loaded in {end_time - start_time:.2f} seconds")
# 通知主进程加载完成
load_ready_queue.put("llm_ready")
# 创建推理参数
infer_param = RKLLMInferParam()
infer_param.mode = RKLLMInferMode.RKLLM_INFER_GENERATE.value
while True:
prompt = prompt_queue.get()
# print(f"Received prompt: ====\n{prompt}\n====")
if prompt == "STOP":
break
image_embeddings = embedding_queue.get()
if isinstance(image_embeddings, str) and image_embeddings == "ERROR":
print("Error processing image")
continue
rkllm_input = create_rkllm_input(RKLLMInputType.RKLLM_INPUT_MULTIMODAL,
prompt=prompt,
image_embed=image_embeddings)
inference_start_time = time.time()
run(handle, rkllm_input, infer_param, None)
# 清理
destroy(handle)
def main():
load_ready_queue = Queue()
embedding_queue = Queue()
img_path_queue = Queue()
prompt_queue = Queue()
inference_done_queue = Queue()
start_event = Event()
vision_process = Process(target=vision_encoder_process,
args=(load_ready_queue, embedding_queue, img_path_queue, start_event))
lm_process = Process(target=llm_process,
args=(load_ready_queue, embedding_queue, prompt_queue, inference_done_queue, start_event))
vision_process.start()
lm_process.start()
# 等待模型加载
ready_count = 0
while ready_count < 2:
status = load_ready_queue.get()
print(f"Received ready signal: {status}")
ready_count += 1
print("All models loaded, starting interactive mode...")
start_event.set()
# 交互循环
try:
while True:
print("""
Enter your input (3 empty lines to start inference, Ctrl+C to exit, for example:
详细描述一下{{./test.jpg}}这张图片
What is the weather in {{./test.jpg}}?
How many people are in {{./test.jpg}}?
):
""")
user_input = []
empty_lines = 0
while empty_lines < 3:
line = input()
if line.strip() == "":
empty_lines += 1
else:
empty_lines = 0
user_input.append(line)
# 解析输入
full_input = "\n".join(user_input[:-3]) # 去掉最后3个空行
import re
img_match = re.search(r'\{\{(.+?)\}\}', full_input)
if not img_match:
print("No image path found in input")
continue
img_path = img_match.group(1)
# 将图片标记替换为<image>标记
prompt = f"""<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
{full_input.replace(img_match.group(0), '<image>')}<|im_end|>
<|im_start|>assistant
"""
img_path_queue.put(img_path)
prompt_queue.put(prompt)
# 等待推理完成
status = inference_done_queue.get()
if status == "ERROR":
print("Inference failed")
except KeyboardInterrupt:
print("\nExiting...")
img_path_queue.put("STOP")
prompt_queue.put("STOP")
vision_process.join()
lm_process.join()
if __name__ == "__main__":
main()