--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - suhaibmasood/med-audio-3 metrics: - wer model-index: - name: Whisper Small en-Harpreet Singh results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: med-audio-3 type: suhaibmasood/med-audio-3 args: 'config: en, split: test' metrics: - name: Wer type: wer value: 12.560386473429952 --- # Whisper Small en-Harpreet Singh This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the med-audio-3 dataset. It achieves the following results on the evaluation set: - Loss: 0.0384 - Wer: 12.5604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0221 | 0.3268 | 100 | 0.0383 | 13.1643 | | 0.0339 | 0.6536 | 200 | 0.0373 | 13.0435 | | 0.0265 | 0.9804 | 300 | 0.0382 | 12.9227 | | 0.0048 | 1.3072 | 400 | 0.0388 | 13.0435 | | 0.0088 | 1.6340 | 500 | 0.0384 | 12.5604 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3