Update script.py
Browse files
script.py
CHANGED
@@ -93,76 +93,6 @@ def train_model(training_dataset, training_config):
|
|
93 |
return best_model
|
94 |
|
95 |
|
96 |
-
def run_inference_on_eval_set(eval_dataset, best_model):
|
97 |
-
"""
|
98 |
-
Run inference on the evaluation set using the best trained model.
|
99 |
-
|
100 |
-
Args:
|
101 |
-
eval_dataset (fiftyone.core.dataset.Dataset): The evaluation dataset.
|
102 |
-
best_model (YOLO): The best trained YOLO model.
|
103 |
-
|
104 |
-
Returns:
|
105 |
-
The dataset eval_dataset with predictions
|
106 |
-
"""
|
107 |
-
eval_dataset.apply_model(best_model, label_field="predictions")
|
108 |
-
eval_dataset.save()
|
109 |
-
return eval_dataset
|
110 |
-
|
111 |
-
|
112 |
-
def eval_model(dataset_to_evaluate):
|
113 |
-
"""
|
114 |
-
Evaluate the model on the evaluation dataset.
|
115 |
-
|
116 |
-
Args:
|
117 |
-
dataset_to_evaluate (fiftyone.core.dataset.Dataset): The evaluation dataset.
|
118 |
-
|
119 |
-
Returns:
|
120 |
-
the mean average precision (mAP) of the model on the evaluation dataset.
|
121 |
-
"""
|
122 |
-
current_datetime = datetime.now().strftime("%Y%m%d_%H%M%S")
|
123 |
-
|
124 |
-
detection_results = dataset_to_evaluate.evaluate_detections(
|
125 |
-
gt_field="ground_truth",
|
126 |
-
pred_field="predictions",
|
127 |
-
eval_key=f"evalrun_{current_datetime}",
|
128 |
-
compute_mAP=True,
|
129 |
-
)
|
130 |
-
|
131 |
-
return detection_results.mAP()
|
132 |
-
|
133 |
-
def run():
|
134 |
-
"""
|
135 |
-
Main function to run the entire training and evaluation process.
|
136 |
-
|
137 |
-
Returns:
|
138 |
-
None
|
139 |
-
"""
|
140 |
-
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
141 |
-
script_dir = os.path.dirname(os.path.abspath(__file__))
|
142 |
-
config_path = os.path.join(script_dir, 'training_config.yaml')
|
143 |
-
with open(config_path, 'r') as file:
|
144 |
-
training_config = yaml.safe_load(file)
|
145 |
-
|
146 |
-
#train set
|
147 |
-
curated_train_dataset = prepare_dataset(name="Voxel51/Data-Centric-Visual-AI-Challenge-Train-Set")
|
148 |
-
|
149 |
-
#public eval set
|
150 |
-
public_eval_dataset = fouh.load_from_hub("Voxel51/DCVAI-Challenge-Public-Eval-Set")
|
151 |
-
|
152 |
-
N = len(curated_train_dataset)
|
153 |
-
|
154 |
-
best_trained_model = train_model(training_dataset=curated_train_dataset, training_config=training_config)
|
155 |
-
|
156 |
-
model_predictions = run_inference_on_eval_set(eval_dataset=public_eval_dataset, best_model=best_trained_model)
|
157 |
-
|
158 |
-
mAP_on_public_eval_set = eval_model(dataset_to_evaluate=model_predictions)
|
159 |
-
|
160 |
-
adjusted_mAP = (mAP_on_public_eval_set * log(N))/N
|
161 |
-
|
162 |
-
# need to add logic to log the score to the leaderboard for now, just print
|
163 |
-
|
164 |
-
print(f"The adjusted mean Average Precision (mAP) on the public evaluation set is: {adjusted_mAP:.4f}")
|
165 |
-
|
166 |
|
167 |
if __name__=="__main__":
|
168 |
run()
|
|
|
93 |
return best_model
|
94 |
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
if __name__=="__main__":
|
98 |
run()
|