Commit
·
e3c4fa8
1
Parent(s):
8b84a69
updates
Browse files
script.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
"""
|
2 |
-
|
|
|
|
|
3 |
|
4 |
You should import your main functions from the data_curation.py script and use them to prepare the dataset for training.
|
5 |
|
6 |
-
The approved model is `
|
7 |
|
8 |
Your predictions must be in a label_field called "predictions" in the dataset.
|
9 |
|
10 |
See here for more details about hyperparameters for this model: https://docs.ultralytics.com/modes/train/#train-settings
|
11 |
-
|
12 |
"""
|
13 |
import os
|
14 |
from datetime import datetime
|
@@ -67,24 +68,35 @@ def train_model(training_dataset, training_config):
|
|
67 |
"""
|
68 |
Train the YOLO model on the given dataset using the provided configuration.
|
69 |
"""
|
|
|
|
|
|
|
70 |
four.random_split(training_dataset, {"train": training_config['train_split'], "val": training_config['val_split']})
|
|
|
71 |
|
|
|
72 |
export_to_yolo_format(
|
73 |
samples=training_dataset,
|
74 |
classes=training_dataset.default_classes,
|
75 |
)
|
|
|
76 |
|
|
|
77 |
model = YOLO("yolov10m.pt")
|
|
|
78 |
|
|
|
79 |
results = model.train(
|
80 |
data="dataset.yaml",
|
81 |
**training_config['train_params']
|
82 |
)
|
83 |
-
|
|
|
84 |
best_model_path = str(results.save_dir / "weights/best.pt")
|
|
|
85 |
best_model = YOLO(best_model_path)
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
if __name__=="__main__":
|
90 |
run()
|
|
|
1 |
"""
|
2 |
+
Note: You don't need to modify this file as this script is used to train the model for the project.
|
3 |
+
|
4 |
+
All of your work should be done in the data_curation.py script.
|
5 |
|
6 |
You should import your main functions from the data_curation.py script and use them to prepare the dataset for training.
|
7 |
|
8 |
+
The approved model is `yolov10m` from Ulytralytics.
|
9 |
|
10 |
Your predictions must be in a label_field called "predictions" in the dataset.
|
11 |
|
12 |
See here for more details about hyperparameters for this model: https://docs.ultralytics.com/modes/train/#train-settings
|
|
|
13 |
"""
|
14 |
import os
|
15 |
from datetime import datetime
|
|
|
68 |
"""
|
69 |
Train the YOLO model on the given dataset using the provided configuration.
|
70 |
"""
|
71 |
+
print("Starting the training process...")
|
72 |
+
|
73 |
+
print("Splitting the dataset...")
|
74 |
four.random_split(training_dataset, {"train": training_config['train_split'], "val": training_config['val_split']})
|
75 |
+
print("Dataset split completed.")
|
76 |
|
77 |
+
print("Exporting dataset to YOLO format...")
|
78 |
export_to_yolo_format(
|
79 |
samples=training_dataset,
|
80 |
classes=training_dataset.default_classes,
|
81 |
)
|
82 |
+
print("Dataset export completed.")
|
83 |
|
84 |
+
print("Initializing the YOLO model...")
|
85 |
model = YOLO("yolov10m.pt")
|
86 |
+
print("Model initialized.")
|
87 |
|
88 |
+
print("Starting model training...")
|
89 |
results = model.train(
|
90 |
data="dataset.yaml",
|
91 |
**training_config['train_params']
|
92 |
)
|
93 |
+
print("Model training completed.")
|
94 |
+
|
95 |
best_model_path = str(results.save_dir / "weights/best.pt")
|
96 |
+
print(f"Best model path: {best_model_path}")
|
97 |
best_model = YOLO(best_model_path)
|
98 |
+
print("Best model loaded.")
|
99 |
|
100 |
+
print(f"Best model saved to: {best_model_path}")
|
|
|
101 |
if __name__=="__main__":
|
102 |
run()
|