diff --git "a/Alpaca_+_Llama3_8b_finetuning_with_own_data (1).ipynb" "b/Alpaca_+_Llama3_8b_finetuning_with_own_data (1).ipynb" new file mode 100644--- /dev/null +++ "b/Alpaca_+_Llama3_8b_finetuning_with_own_data (1).ipynb" @@ -0,0 +1,3807 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n", + "
\n", + "\n", + "To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth#installation-instructions---conda).\n", + "\n", + "You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp).\n", + "\n", + "**[NEW] Llama-3 8b is trained on a crazy 15 trillion tokens! Llama-2 was 2 trillion.**\n", + "\n", + "Use our [Llama-3 8b Instruct](https://colab.research.google.com/drive/1XamvWYinY6FOSX9GLvnqSjjsNflxdhNc?usp=sharing) notebook for conversational style finetunes.\n", + "\n", + "https://github.com/unslothai/unsloth?tab=readme-ov-file" + ], + "metadata": { + "id": "IqM-T1RTzY6C" + } + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "2eSvM9zX_2d3" + }, + "outputs": [], + "source": [ + "%%capture\n", + "# Installs Unsloth, Xformers (Flash Attention) and all other packages!\n", + "!pip install \"unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git\"\n", + "!pip install --no-deps xformers \"trl<0.9.0\" peft accelerate bitsandbytes" + ] + }, + { + "cell_type": "markdown", + "source": [ + "* We support Llama, Mistral, Phi-3, Gemma, Yi, DeepSeek, Qwen, TinyLlama, Vicuna, Open Hermes etc\n", + "* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.\n", + "* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.\n", + "* With [PR 26037](https://github.com/huggingface/transformers/pull/26037), we support downloading 4bit models **4x faster**! [Our repo](https://huggingface.co/unsloth) has Llama, Mistral 4bit models.\n", + "* [**NEW**] We make Phi-3 Medium / Mini **2x faster**! See our [Phi-3 Medium notebook](https://colab.research.google.com/drive/1hhdhBa1j_hsymiW9m-WzxQtgqTH_NHqi?usp=sharing)" + ], + "metadata": { + "id": "r2v_X2fA0Df5" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 313, + "referenced_widgets": [ + "ff883cd3c84046679615688aeecbf1af", + "9beffd1bd6b843b2b5078ecbbe371a90", + "c06c79c6887140d7a85e850876c3a1c6", + "c122b87ecfbb443d95bc962fe08597dc", + "cf0c3d6afb14474ebf1f1cee9d5e2b64", + "07675e21e9ab46dbb3e98937c9293b38", + "fa6d98ccc92d4a839d632a93eb9ec25b", + "1b21db3e0e424d38801d184bf8cc7212", + "0b4712f7759749e7aeb81f7189847f7f", + "a22165f04f8c438a8b43671fbb18103a", + "06c029cb451a4b1087d666e0f7abd7fd", + "0a42fbbda6144b4ba56b3d978bbcaf90", + "ba6de510384148fda85371e344f02457", + "a333fd5483ee46dab7a38f03ae8ed03c", + "3d5206097a0d44f9b12070feb72b02ad", + "799c5debe8474454a9777b72da8ab99e", + "0aca903bbfa645c3a982c75d998b8ccd", + "b6d0e78e937f4460a727ddded40e964f", + "9c8a2d69b31040d3a4a96b7331a2867a", + "d402bdc8838a47ad9a22c9bc4198b3c1", + "dfb95a6a41fa437ea811f8d599eec60e", + "26a73d7fef4d4a7a9f074785018f7305", + "8345314cadd0478d9a08bc3a76ebdebc", + "651aa2ecfb2646b7ad2aece839d6630e", + "41522234a7ff4c409fa7bce7a6dbc968", + "5b186f9cd84248ac82370ea9ca8e28cf", + "74385c0212b545a597975476a3ff1260", + "9ed04fb590774b60bd812415e140bc02", + "9bfe49502a924c66bdcd3e8adc474bcf", + "b443999e90d24197a7077bd61d512c22", + "5b0749f217e94dc48f5be6c63dadb1c9", + "b215aeddaf454d38abc9d44ef1bbd1d2", + "ad5681f162de465d93e49aced5a1960c", + "7537da4468994b9ab3a3ea9a438381db", + "38e0c6c86f0e4a71890d5fd6e8acc12e", + "422784e38cb4431f92fa6a18748da194", + "c2dbff9c9c45442597b64375de7a2f2b", + "19eeb5ea80b14ce6b064613c74a9cd48", + "8f61bb0b62ba449e8825acbc46a4f8d4", + "9222884c8fe64d358696f87d665fab33", + "d23b84de3c7e4a02b2bc24a96ff15cc1", + "69280420f5a04d5f9bf95d59c0bc5a43", + "2033daae1224463ba90fa840bc30570e", + "a95ba7b97e734d50ae1cf4c3a0ca2552", + "a3c0223a4470466cada8071c493bb344", + "55710ad5c34140cf9e1e061ee1ee150d", + "4d084e9e729c405e9dc9aa894c0533b3", + "3ccdf40f40b14c9389a684380515d107", + "e31f02e521404075991f8d646daa8009", + "5f9b0cb06bdb45c68b122c2a82d3a468", + "59d12b0032e948238a2a28ca49030934", + "8f5fc1a008dd4ecdaef7e075254d1c49", + "b77efd2c9c1d4eddb345117972fc0ce8", + "af058e735f0f45689ffc82adfb22e8bd", + "77397bfe7b734a3a8e0c21e7a147cda5", + "7daf5e72a19c49d7a1ff20021c967a60", + "8ab7aacf41774f2ca2d2cd5d795f2de2", + "8a954d84b64c4b6baf23de373424e879", + "39de318dcd024702bb66d978afc48dea", + "293376904a5141dc91c4c35a0960b2c6", + "f071bf96a9a540eabbc1680603e15b63", + "5fac3de7b57f48a7aa54edbc1597f26f", + "76c89b06905f4c4ca33ed41b3c93b672", + "bee1ecc5652043a5abaa4077f5e63299", + "cc7c081019514b999ec3020e358870ee", + "e07b0e507c89476bbc397d3f11ecda66" + ] + }, + "id": "QmUBVEnvCDJv", + "outputId": "c2e986fe-0735-402a-f9ce-eff5b86496b2" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "π¦₯ Unsloth: Will patch your computer to enable 2x faster free finetuning.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "config.json: 0%| | 0.00/1.20k [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "ff883cd3c84046679615688aeecbf1af" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "==((====))== Unsloth: Fast Llama patching release 2024.7\n", + " \\\\ /| GPU: Tesla T4. Max memory: 14.748 GB. Platform = Linux.\n", + "O^O/ \\_/ \\ Pytorch: 2.3.0+cu121. CUDA = 7.5. CUDA Toolkit = 12.1.\n", + "\\ / Bfloat16 = FALSE. FA [Xformers = 0.0.26.post1. FA2 = False]\n", + " \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "model.safetensors: 0%| | 0.00/5.70G [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "0a42fbbda6144b4ba56b3d978bbcaf90" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "generation_config.json: 0%| | 0.00/172 [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "8345314cadd0478d9a08bc3a76ebdebc" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "tokenizer_config.json: 0%| | 0.00/50.6k [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "7537da4468994b9ab3a3ea9a438381db" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "tokenizer.json: 0%| | 0.00/9.09M [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "a3c0223a4470466cada8071c493bb344" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "special_tokens_map.json: 0%| | 0.00/464 [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "7daf5e72a19c49d7a1ff20021c967a60" + } + }, + "metadata": {} + } + ], + "source": [ + "from unsloth import FastLanguageModel\n", + "import torch\n", + "max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n", + "dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\n", + "load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.\n", + "\n", + "# 4bit pre quantized models we support for 4x faster downloading + no OOMs.\n", + "fourbit_models = [\n", + " \"unsloth/mistral-7b-v0.3-bnb-4bit\", # New Mistral v3 2x faster!\n", + " \"unsloth/mistral-7b-instruct-v0.3-bnb-4bit\",\n", + " \"unsloth/llama-3-8b-bnb-4bit\", # Llama-3 15 trillion tokens model 2x faster!\n", + " \"unsloth/llama-3-8b-Instruct-bnb-4bit\",\n", + " \"unsloth/llama-3-70b-bnb-4bit\",\n", + " \"unsloth/Phi-3-mini-4k-instruct\", # Phi-3 2x faster!\n", + " \"unsloth/Phi-3-medium-4k-instruct\",\n", + " \"unsloth/mistral-7b-bnb-4bit\",\n", + " \"unsloth/gemma-7b-bnb-4bit\", # Gemma 2.2x faster!\n", + "] # More models at https://huggingface.co/unsloth\n", + "\n", + "model, tokenizer = FastLanguageModel.from_pretrained(\n", + " model_name = \"unsloth/llama-3-8b-bnb-4bit\",\n", + " max_seq_length = max_seq_length,\n", + " dtype = dtype,\n", + " load_in_4bit = load_in_4bit,\n", + " # token = \"hf_...\", # use one if using gated models like meta-llama/Llama-2-7b-hf\n", + ")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "We now add LoRA adapters so we only need to update 1 to 10% of all parameters!" + ], + "metadata": { + "id": "SXd9bTZd1aaL" + } + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "6bZsfBuZDeCL", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "af27cfd6-a1a1-447a-d540-5e3ac0b8677a" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Unsloth 2024.7 patched 32 layers with 32 QKV layers, 32 O layers and 32 MLP layers.\n" + ] + } + ], + "source": [ + "model = FastLanguageModel.get_peft_model(\n", + " model,\n", + " r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n", + " target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n", + " \"gate_proj\", \"up_proj\", \"down_proj\",],\n", + " lora_alpha = 16,\n", + " lora_dropout = 0, # Supports any, but = 0 is optimized\n", + " bias = \"none\", # Supports any, but = \"none\" is optimized\n", + " # [NEW] \"unsloth\" uses 30% less VRAM, fits 2x larger batch sizes!\n", + " use_gradient_checkpointing = \"unsloth\", # True or \"unsloth\" for very long context\n", + " random_state = 3407,\n", + " use_rslora = False, # We support rank stabilized LoRA\n", + " loftq_config = None, # And LoftQ\n", + ")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "### Data Prep\n", + "We now use the Alpaca dataset from [yahma](https://huggingface.co/datasets/yahma/alpaca-cleaned), which is a filtered version of 52K of the original [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html). You can replace this code section with your own data prep.\n", + "\n", + "**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).\n", + "\n", + "**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations!\n", + "\n", + "If you want to use the `llama-3` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1XamvWYinY6FOSX9GLvnqSjjsNflxdhNc?usp=sharing).\n", + "\n", + "For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)." + ], + "metadata": { + "id": "vITh0KVJ10qX" + } + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "id": "LjY75GoYUCB8" + }, + "outputs": [], + "source": [ + "alpaca_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n", + "\n", + "### Instruction:\n", + "{}\n", + "\n", + "### Input:\n", + "{}\n", + "\n", + "### Response:\n", + "{}\"\"\"\n", + "\n", + "EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN\n", + "def formatting_prompts_func(examples):\n", + " instructions = examples[\"instruction\"]\n", + " inputs = examples[\"input\"]\n", + " outputs = examples[\"output\"]\n", + " texts = []\n", + " for instruction, input, output in zip(instructions, inputs, outputs):\n", + " # Must add EOS_TOKEN, otherwise your generation will go on forever!\n", + " text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN\n", + " texts.append(text)\n", + " return { \"text\" : texts, }\n", + "pass\n", + "\n", + "from datasets import load_dataset\n", + "dataset = load_dataset(\"harry85/alpaca-cleaned-harry\", split = \"train\")\n", + "dataset = dataset.map(formatting_prompts_func, batched = True,)\n" + ] + }, + { + "cell_type": "code", + "source": [ + "#dataset.head()" + ], + "metadata": { + "id": "GJJqORnVbJ_4" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "### Train the model\n", + "Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!" + ], + "metadata": { + "id": "idAEIeSQ3xdS" + } + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "id": "95_Nn-89DhsL", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 156, + "referenced_widgets": [ + "994d720814ee4c2092bbbf826624232d", + "486dcf59946c4e0ba8d81454705c4622", + "0fee6dfe3a234304a4f7f762e2322015", + "40234b68c85e436a81d11386c130d5ca", + "92c9d5e53215423786a2417564b0a223", + "32a580941e0c4b40aa150dc983f5792f", + "7211447d333242daa2e4b45ceca5bf80", + "751de11ef70f405bb82c7bea03a02c0f", + "724ffdc42eaa4a0895cbc7fce511bb4f", + "45c1a6f5442d412db02dd7ba2690ad90", + "f219a81178404a0c9e4b3e248d73d589" + ] + }, + "outputId": "155e75d8-c203-49e4-91d4-e9a7a0262c40" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/multiprocess/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n", + " self.pid = os.fork()\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map (num_proc=2): 0%| | 0/4 [00:00, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "994d720814ee4c2092bbbf826624232d" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/trl/trainer/sft_trainer.py:318: UserWarning: You passed a tokenizer with `padding_side` not equal to `right` to the SFTTrainer. This might lead to some unexpected behaviour due to overflow issues when training a model in half-precision. You might consider adding `tokenizer.padding_side = 'right'` to your code.\n", + " warnings.warn(\n", + "max_steps is given, it will override any value given in num_train_epochs\n" + ] + } + ], + "source": [ + "from trl import SFTTrainer\n", + "from transformers import TrainingArguments\n", + "from unsloth import is_bfloat16_supported\n", + "\n", + "trainer = SFTTrainer(\n", + " model = model,\n", + " tokenizer = tokenizer,\n", + " train_dataset = dataset,\n", + " dataset_text_field = \"text\",\n", + " max_seq_length = max_seq_length,\n", + " dataset_num_proc = 2,\n", + " packing = False, # Can make training 5x faster for short sequences.\n", + " args = TrainingArguments(\n", + " per_device_train_batch_size = 2,\n", + " gradient_accumulation_steps = 4,\n", + " warmup_steps = 5,\n", + " max_steps = 100,\n", + " learning_rate = 2e-4,\n", + " fp16 = not is_bfloat16_supported(),\n", + " bf16 = is_bfloat16_supported(),\n", + " logging_steps = 1,\n", + " optim = \"adamw_8bit\",\n", + " weight_decay = 0.01,\n", + " lr_scheduler_type = \"linear\",\n", + " seed = 3407,\n", + " output_dir = \"outputs\",\n", + " ),\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2ejIt2xSNKKp", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "0250e965-0a17-411b-a8b8-699525468de3", + "cellView": "form" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "GPU = NVIDIA L4. Max memory = 22.168 GB.\n", + "5.594 GB of memory reserved.\n" + ] + } + ], + "source": [ + "#@title Show current memory stats\n", + "gpu_stats = torch.cuda.get_device_properties(0)\n", + "start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n", + "max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n", + "print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n", + "print(f\"{start_gpu_memory} GB of memory reserved.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "yqxqAZ7KJ4oL", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "33979581-3f1d-45cd-823b-3db88d32cbd2" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1\n", + " \\\\ /| Num examples = 4 | Num Epochs = 100\n", + "O^O/ \\_/ \\ Batch size per device = 2 | Gradient Accumulation steps = 4\n", + "\\ / Total batch size = 8 | Total steps = 100\n", + " \"-____-\" Number of trainable parameters = 41,943,040\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Step | \n", + "Training Loss | \n", + "
---|---|
1 | \n", + "1.970400 | \n", + "
2 | \n", + "1.970400 | \n", + "
3 | \n", + "1.971100 | \n", + "
4 | \n", + "1.970400 | \n", + "
5 | \n", + "1.970400 | \n", + "
6 | \n", + "1.970400 | \n", + "
7 | \n", + "1.971100 | \n", + "
8 | \n", + "1.970400 | \n", + "
9 | \n", + "1.955600 | \n", + "
10 | \n", + "1.970400 | \n", + "
11 | \n", + "1.970400 | \n", + "
12 | \n", + "1.955600 | \n", + "
13 | \n", + "1.955600 | \n", + "
14 | \n", + "1.971100 | \n", + "
15 | \n", + "1.971100 | \n", + "
16 | \n", + "1.971100 | \n", + "
17 | \n", + "1.970400 | \n", + "
18 | \n", + "1.955600 | \n", + "
19 | \n", + "1.971100 | \n", + "
20 | \n", + "1.955600 | \n", + "
21 | \n", + "1.970400 | \n", + "
22 | \n", + "1.970400 | \n", + "
23 | \n", + "1.971100 | \n", + "
24 | \n", + "1.970400 | \n", + "
25 | \n", + "1.971100 | \n", + "
26 | \n", + "1.970400 | \n", + "
27 | \n", + "1.970400 | \n", + "
28 | \n", + "1.971100 | \n", + "
29 | \n", + "1.955600 | \n", + "
30 | \n", + "1.971100 | \n", + "
31 | \n", + "1.970400 | \n", + "
32 | \n", + "1.970400 | \n", + "
33 | \n", + "1.971000 | \n", + "
34 | \n", + "1.970300 | \n", + "
35 | \n", + "1.970300 | \n", + "
36 | \n", + "1.955300 | \n", + "
37 | \n", + "1.970900 | \n", + "
38 | \n", + "1.970200 | \n", + "
39 | \n", + "1.955400 | \n", + "
40 | \n", + "1.955500 | \n", + "
41 | \n", + "1.970300 | \n", + "
42 | \n", + "1.955500 | \n", + "
43 | \n", + "1.970900 | \n", + "
44 | \n", + "1.970800 | \n", + "
45 | \n", + "1.955400 | \n", + "
46 | \n", + "1.970800 | \n", + "
47 | \n", + "1.970900 | \n", + "
48 | \n", + "1.970200 | \n", + "
49 | \n", + "1.955200 | \n", + "
50 | \n", + "1.970100 | \n", + "
51 | \n", + "1.970200 | \n", + "
52 | \n", + "1.955300 | \n", + "
53 | \n", + "1.955500 | \n", + "
54 | \n", + "1.970900 | \n", + "
55 | \n", + "1.970900 | \n", + "
56 | \n", + "1.970900 | \n", + "
57 | \n", + "1.955400 | \n", + "
58 | \n", + "1.970400 | \n", + "
59 | \n", + "1.970200 | \n", + "
60 | \n", + "1.970900 | \n", + "
61 | \n", + "1.970400 | \n", + "
62 | \n", + "1.955400 | \n", + "
63 | \n", + "1.955500 | \n", + "
64 | \n", + "1.955300 | \n", + "
65 | \n", + "1.955400 | \n", + "
66 | \n", + "1.970900 | \n", + "
67 | \n", + "1.955400 | \n", + "
68 | \n", + "1.955400 | \n", + "
69 | \n", + "1.970800 | \n", + "
70 | \n", + "1.970900 | \n", + "
71 | \n", + "1.970300 | \n", + "
72 | \n", + "1.970900 | \n", + "
73 | \n", + "1.955600 | \n", + "
74 | \n", + "1.955500 | \n", + "
75 | \n", + "1.970900 | \n", + "
76 | \n", + "1.970300 | \n", + "
77 | \n", + "1.970300 | \n", + "
78 | \n", + "1.971000 | \n", + "
79 | \n", + "1.970900 | \n", + "
80 | \n", + "1.955400 | \n", + "
81 | \n", + "1.955300 | \n", + "
82 | \n", + "1.970900 | \n", + "
83 | \n", + "1.970300 | \n", + "
84 | \n", + "1.970900 | \n", + "
85 | \n", + "1.955300 | \n", + "
86 | \n", + "1.970200 | \n", + "
87 | \n", + "1.970800 | \n", + "
88 | \n", + "1.955300 | \n", + "
89 | \n", + "1.955300 | \n", + "
90 | \n", + "1.955200 | \n", + "
91 | \n", + "1.970200 | \n", + "
92 | \n", + "1.970400 | \n", + "
93 | \n", + "1.955200 | \n", + "
94 | \n", + "1.970100 | \n", + "
95 | \n", + "1.955300 | \n", + "
96 | \n", + "1.970300 | \n", + "
97 | \n", + "1.970400 | \n", + "
98 | \n", + "1.970700 | \n", + "
99 | \n", + "1.955400 | \n", + "
100 | \n", + "1.955400 | \n", + "
" + ] + }, + "metadata": {} + } + ], + "source": [ + "trainer_stats = trainer.train()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pCqnaKmlO1U9" + }, + "outputs": [], + "source": [ + "#@title Show final memory and time stats\n", + "used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n", + "used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n", + "used_percentage = round(used_memory /max_memory*100, 3)\n", + "lora_percentage = round(used_memory_for_lora/max_memory*100, 3)\n", + "print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n", + "print(f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\")\n", + "print(f\"Peak reserved memory = {used_memory} GB.\")\n", + "print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n", + "print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n", + "print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "### Inference\n", + "Let's run the model! You can change the instruction and input - leave the output blank!" + ], + "metadata": { + "id": "ekOmTR1hSNcr" + } + }, + { + "cell_type": "code", + "source": [ + "# alpaca_prompt = Copied from above\n", + "FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n", + "inputs = tokenizer(\n", + "[\n", + " alpaca_prompt.format(\n", + " \"Given a positive integer, generate a sequence of numbers leading to 1.\", # instruction\n", + " \"Number: 6\", # input\n", + " \"\", # output - leave this blank for generation!\n", + " )\n", + "], return_tensors = \"pt\").to(\"cuda\")\n", + "\n", + "outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n", + "tokenizer.batch_decode(outputs)" + ], + "metadata": { + "id": "kR3gIAX-SM2q", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "4649ab70-bc33-4195-e772-7d0e884b230a" + }, + "execution_count": 42, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['<|begin_of_text|>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nGiven a positive integer, generate a sequence of numbers leading to 1.\\n\\n### Input:\\nNumber: 6\\n\\n### Response:\\n1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1\\n<|end_of_text|>']" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + " You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!" + ], + "metadata": { + "id": "CrSvZObor0lY" + } + }, + { + "cell_type": "code", + "source": [ + "# alpaca_prompt = Copied from above\n", + "FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n", + "inputs = tokenizer(\n", + "[\n", + " alpaca_prompt.format(\n", + " \"Continue the fibonnaci sequence.\", # instruction\n", + " \"1, 1, 2, 3, 5, 8\", # input\n", + " \"\", # output - leave this blank for generation!\n", + " )\n", + "], return_tensors = \"pt\").to(\"cuda\")\n", + "\n", + "from transformers import TextStreamer\n", + "text_streamer = TextStreamer(tokenizer)\n", + "_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)" + ], + "metadata": { + "id": "e2pEuRb1r2Vg", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "39a6fc62-da67-443d-8073-7b34578ad918" + }, + "execution_count": 43, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "<|begin_of_text|>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n", + "\n", + "### Instruction:\n", + "Continue the fibonnaci sequence.\n", + "\n", + "### Input:\n", + "1, 1, 2, 3, 5, 8\n", + "\n", + "### Response:\n", + "13\n", + "<|end_of_text|>\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# alpaca_prompt = Copied from above\n", + "FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n", + "inputs = tokenizer(\n", + "[\n", + " alpaca_prompt.format(\n", + " \"who is haris hota\", # instruction\n", + " \"\", # input\n", + " \"\", # output - leave this blank for generation!\n", + " )\n", + "], return_tensors = \"pt\").to(\"cuda\")\n", + "\n", + "from transformers import TextStreamer\n", + "text_streamer = TextStreamer(tokenizer)\n", + "_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Xx5CdpGTwcU7", + "outputId": "65f2133b-5309-4236-9255-e542c488394d" + }, + "execution_count": 48, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "<|begin_of_text|>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n", + "\n", + "### Instruction:\n", + "who is haris hota\n", + "\n", + "### Input:\n", + "\n", + "\n", + "### Response:\n", + "<|end_of_text|>\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "### Saving, loading finetuned models\n", + "To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n", + "\n", + "**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!" + ], + "metadata": { + "id": "uMuVrWbjAzhc" + } + }, + { + "cell_type": "code", + "source": [ + "model.save_pretrained(\"model_LLAMA3_Finetuned_HH\") # Local saving\n", + "tokenizer.save_pretrained(\"model_LLAMA3_Finetuned_Tokenizer_HH\")\n", + "# model.push_to_hub(\"your_name/lora_model\", token = \"...\") # Online saving\n", + "# tokenizer.push_to_hub(\"your_name/lora_model\", token = \"...\") # Online saving" + ], + "metadata": { + "id": "upcOlWe7A1vc", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "306b672f-73a9-4719-c656-0066baf35856" + }, + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "('model_LLAMA3_Finetuned_Tokenizer_HH/tokenizer_config.json',\n", + " 'model_LLAMA3_Finetuned_Tokenizer_HH/special_tokens_map.json',\n", + " 'model_LLAMA3_Finetuned_Tokenizer_HH/tokenizer.json')" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:" + ], + "metadata": { + "id": "AEEcJ4qfC7Lp" + } + }, + { + "cell_type": "code", + "source": [ + "if False:\n", + " from unsloth import FastLanguageModel\n", + " model, tokenizer = FastLanguageModel.from_pretrained(\n", + " model_name = \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n", + " max_seq_length = max_seq_length,\n", + " dtype = dtype,\n", + " load_in_4bit = load_in_4bit,\n", + " )\n", + " FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n", + "\n", + "# alpaca_prompt = You MUST copy from above!\n", + "\n", + "inputs = tokenizer(\n", + "[\n", + " alpaca_prompt.format(\n", + " \"What is a famous tall tower in Paris?\", # instruction\n", + " \"\", # input\n", + " \"\", # output - leave this blank for generation!\n", + " )\n", + "], return_tensors = \"pt\").to(\"cuda\")\n", + "\n", + "outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n", + "tokenizer.batch_decode(outputs)" + ], + "metadata": { + "id": "MKX_XKs_BNZR", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "be14674f-5865-40b8-8d9d-b93327464f13" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['<|begin_of_text|>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nWhat is a famous tall tower in Paris?\\n\\n### Input:\\n\\n\\n### Response:\\nOne of the most famous tall towers in Paris is the Eiffel Tower. Built in 1889, it stands at 324 meters tall and is located on the Champ de Mars in the 7th arrondissement of Paris. The Eiffel Tower is a wrought-iron lattice tower designed by the French']" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**." + ], + "metadata": { + "id": "QQMjaNrjsU5_" + } + }, + { + "cell_type": "code", + "source": [ + "if False:\n", + " # I highly do NOT suggest - use Unsloth if possible\n", + " from peft import AutoPeftModelForCausalLM\n", + " from transformers import AutoTokenizer\n", + " model = AutoPeftModelForCausalLM.from_pretrained(\n", + " \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n", + " load_in_4bit = load_in_4bit,\n", + " )\n", + " tokenizer = AutoTokenizer.from_pretrained(\"lora_model\")" + ], + "metadata": { + "id": "yFfaXG0WsQuE" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Saving to float16 for VLLM\n", + "\n", + "We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens." + ], + "metadata": { + "id": "f422JgM9sdVT" + } + }, + { + "cell_type": "code", + "source": [ + "# Merge to 16bit\n", + "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\n", + "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_16bit\", token = \"\")\n", + "\n", + "# Merge to 4bit\n", + "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit\",)\n", + "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_4bit\", token = \"\")\n", + "\n", + "# Just LoRA adapters\n", + "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\n", + "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"lora\", token = \"\")" + ], + "metadata": { + "id": "iHjt_SMYsd3P" + }, + "execution_count": 33, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### GGUF / llama.cpp Conversion\n", + "To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.\n", + "\n", + "Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):\n", + "* `q8_0` - Fast conversion. High resource use, but generally acceptable.\n", + "* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.\n", + "* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K." + ], + "metadata": { + "id": "TCv4vXHd61i7" + } + }, + { + "cell_type": "code", + "source": [ + "# Save to 8bit Q8_0\n", + "if False: model.save_pretrained_gguf(\"model\", tokenizer,)\n", + "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, token = \"\")\n", + "\n", + "# Save to 16bit GGUF\n", + "if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"f16\")\n", + "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"f16\", token = \"\")\n", + "\n", + "# Save to q4_k_m GGUF\n", + "if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"q4_k_m\")\n", + "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"q4_k_m\", token = \"\")" + ], + "metadata": { + "id": "FqfebeAdT073" + }, + "execution_count": 34, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html)." + ], + "metadata": { + "id": "bDp0zNpwe6U_" + } + }, + { + "cell_type": "markdown", + "source": [ + "And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/u54VK8m8tk) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!\n", + "\n", + "Some other links:\n", + "1. Zephyr DPO 2x faster [free Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)\n", + "2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)\n", + "3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n", + "4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n", + "5. Mistral 7b [free Kaggle version](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)\n", + "6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with π€ HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n", + "7. `ChatML` for ShareGPT datasets, [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing)\n", + "8. Text completions like novel writing [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)\n", + "9. [**NEW**] We make Phi-3 Medium / Mini **2x faster**! See our [Phi-3 Medium notebook](https://colab.research.google.com/drive/1hhdhBa1j_hsymiW9m-WzxQtgqTH_NHqi?usp=sharing)\n", + "\n", + "
" + ], + "metadata": { + "id": "Zt9CHJqO6p30" + } + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [], + "gpuType": "T4" + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "ff883cd3c84046679615688aeecbf1af": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9beffd1bd6b843b2b5078ecbbe371a90", + "IPY_MODEL_c06c79c6887140d7a85e850876c3a1c6", + "IPY_MODEL_c122b87ecfbb443d95bc962fe08597dc" + ], + "layout": "IPY_MODEL_cf0c3d6afb14474ebf1f1cee9d5e2b64" + } + }, + "9beffd1bd6b843b2b5078ecbbe371a90": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_07675e21e9ab46dbb3e98937c9293b38", + "placeholder": "β", + "style": "IPY_MODEL_fa6d98ccc92d4a839d632a93eb9ec25b", + "value": "config.json:β100%" + } + }, + "c06c79c6887140d7a85e850876c3a1c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1b21db3e0e424d38801d184bf8cc7212", + "max": 1200, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0b4712f7759749e7aeb81f7189847f7f", + "value": 1200 + } + }, + "c122b87ecfbb443d95bc962fe08597dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a22165f04f8c438a8b43671fbb18103a", + "placeholder": "β", + "style": "IPY_MODEL_06c029cb451a4b1087d666e0f7abd7fd", + "value": "β1.20k/1.20kβ[00:00<00:00,β24.5kB/s]" + } + }, + "cf0c3d6afb14474ebf1f1cee9d5e2b64": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "07675e21e9ab46dbb3e98937c9293b38": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fa6d98ccc92d4a839d632a93eb9ec25b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1b21db3e0e424d38801d184bf8cc7212": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0b4712f7759749e7aeb81f7189847f7f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a22165f04f8c438a8b43671fbb18103a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "06c029cb451a4b1087d666e0f7abd7fd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0a42fbbda6144b4ba56b3d978bbcaf90": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ba6de510384148fda85371e344f02457", + "IPY_MODEL_a333fd5483ee46dab7a38f03ae8ed03c", + "IPY_MODEL_3d5206097a0d44f9b12070feb72b02ad" + ], + "layout": "IPY_MODEL_799c5debe8474454a9777b72da8ab99e" + } + }, + "ba6de510384148fda85371e344f02457": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0aca903bbfa645c3a982c75d998b8ccd", + "placeholder": "β", + "style": "IPY_MODEL_b6d0e78e937f4460a727ddded40e964f", + "value": "model.safetensors:β100%" + } + }, + "a333fd5483ee46dab7a38f03ae8ed03c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9c8a2d69b31040d3a4a96b7331a2867a", + "max": 5702746405, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d402bdc8838a47ad9a22c9bc4198b3c1", + "value": 5702746405 + } + }, + "3d5206097a0d44f9b12070feb72b02ad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dfb95a6a41fa437ea811f8d599eec60e", + "placeholder": "β", + "style": "IPY_MODEL_26a73d7fef4d4a7a9f074785018f7305", + "value": "β5.70G/5.70Gβ[00:32<00:00,β247MB/s]" + } + }, + "799c5debe8474454a9777b72da8ab99e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0aca903bbfa645c3a982c75d998b8ccd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b6d0e78e937f4460a727ddded40e964f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9c8a2d69b31040d3a4a96b7331a2867a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d402bdc8838a47ad9a22c9bc4198b3c1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "dfb95a6a41fa437ea811f8d599eec60e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "26a73d7fef4d4a7a9f074785018f7305": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8345314cadd0478d9a08bc3a76ebdebc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_651aa2ecfb2646b7ad2aece839d6630e", + "IPY_MODEL_41522234a7ff4c409fa7bce7a6dbc968", + "IPY_MODEL_5b186f9cd84248ac82370ea9ca8e28cf" + ], + "layout": "IPY_MODEL_74385c0212b545a597975476a3ff1260" + } + }, + "651aa2ecfb2646b7ad2aece839d6630e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9ed04fb590774b60bd812415e140bc02", + "placeholder": "β", + "style": "IPY_MODEL_9bfe49502a924c66bdcd3e8adc474bcf", + "value": "generation_config.json:β100%" + } + }, + "41522234a7ff4c409fa7bce7a6dbc968": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b443999e90d24197a7077bd61d512c22", + "max": 172, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5b0749f217e94dc48f5be6c63dadb1c9", + "value": 172 + } + }, + "5b186f9cd84248ac82370ea9ca8e28cf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b215aeddaf454d38abc9d44ef1bbd1d2", + "placeholder": "β", + "style": "IPY_MODEL_ad5681f162de465d93e49aced5a1960c", + "value": "β172/172β[00:00<00:00,β11.3kB/s]" + } + }, + "74385c0212b545a597975476a3ff1260": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9ed04fb590774b60bd812415e140bc02": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9bfe49502a924c66bdcd3e8adc474bcf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b443999e90d24197a7077bd61d512c22": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b0749f217e94dc48f5be6c63dadb1c9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b215aeddaf454d38abc9d44ef1bbd1d2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad5681f162de465d93e49aced5a1960c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7537da4468994b9ab3a3ea9a438381db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_38e0c6c86f0e4a71890d5fd6e8acc12e", + "IPY_MODEL_422784e38cb4431f92fa6a18748da194", + "IPY_MODEL_c2dbff9c9c45442597b64375de7a2f2b" + ], + "layout": "IPY_MODEL_19eeb5ea80b14ce6b064613c74a9cd48" + } + }, + "38e0c6c86f0e4a71890d5fd6e8acc12e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f61bb0b62ba449e8825acbc46a4f8d4", + "placeholder": "β", + "style": "IPY_MODEL_9222884c8fe64d358696f87d665fab33", + "value": "tokenizer_config.json:β100%" + } + }, + "422784e38cb4431f92fa6a18748da194": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d23b84de3c7e4a02b2bc24a96ff15cc1", + "max": 50641, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_69280420f5a04d5f9bf95d59c0bc5a43", + "value": 50641 + } + }, + "c2dbff9c9c45442597b64375de7a2f2b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2033daae1224463ba90fa840bc30570e", + "placeholder": "β", + "style": "IPY_MODEL_a95ba7b97e734d50ae1cf4c3a0ca2552", + "value": "β50.6k/50.6kβ[00:00<00:00,β1.34MB/s]" + } + }, + "19eeb5ea80b14ce6b064613c74a9cd48": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8f61bb0b62ba449e8825acbc46a4f8d4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9222884c8fe64d358696f87d665fab33": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d23b84de3c7e4a02b2bc24a96ff15cc1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "69280420f5a04d5f9bf95d59c0bc5a43": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2033daae1224463ba90fa840bc30570e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a95ba7b97e734d50ae1cf4c3a0ca2552": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a3c0223a4470466cada8071c493bb344": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_55710ad5c34140cf9e1e061ee1ee150d", + "IPY_MODEL_4d084e9e729c405e9dc9aa894c0533b3", + "IPY_MODEL_3ccdf40f40b14c9389a684380515d107" + ], + "layout": "IPY_MODEL_e31f02e521404075991f8d646daa8009" + } + }, + "55710ad5c34140cf9e1e061ee1ee150d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5f9b0cb06bdb45c68b122c2a82d3a468", + "placeholder": "β", + "style": "IPY_MODEL_59d12b0032e948238a2a28ca49030934", + "value": "tokenizer.json:β100%" + } + }, + "4d084e9e729c405e9dc9aa894c0533b3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f5fc1a008dd4ecdaef7e075254d1c49", + "max": 9085698, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b77efd2c9c1d4eddb345117972fc0ce8", + "value": 9085698 + } + }, + "3ccdf40f40b14c9389a684380515d107": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_af058e735f0f45689ffc82adfb22e8bd", + "placeholder": "β", + "style": "IPY_MODEL_77397bfe7b734a3a8e0c21e7a147cda5", + "value": "β9.09M/9.09Mβ[00:00<00:00,β10.3MB/s]" + } + }, + "e31f02e521404075991f8d646daa8009": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f9b0cb06bdb45c68b122c2a82d3a468": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "59d12b0032e948238a2a28ca49030934": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8f5fc1a008dd4ecdaef7e075254d1c49": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b77efd2c9c1d4eddb345117972fc0ce8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "af058e735f0f45689ffc82adfb22e8bd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "77397bfe7b734a3a8e0c21e7a147cda5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7daf5e72a19c49d7a1ff20021c967a60": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8ab7aacf41774f2ca2d2cd5d795f2de2", + "IPY_MODEL_8a954d84b64c4b6baf23de373424e879", + "IPY_MODEL_39de318dcd024702bb66d978afc48dea" + ], + "layout": "IPY_MODEL_293376904a5141dc91c4c35a0960b2c6" + } + }, + "8ab7aacf41774f2ca2d2cd5d795f2de2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f071bf96a9a540eabbc1680603e15b63", + "placeholder": "β", + "style": "IPY_MODEL_5fac3de7b57f48a7aa54edbc1597f26f", + "value": "special_tokens_map.json:β100%" + } + }, + "8a954d84b64c4b6baf23de373424e879": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_76c89b06905f4c4ca33ed41b3c93b672", + "max": 464, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_bee1ecc5652043a5abaa4077f5e63299", + "value": 464 + } + }, + "39de318dcd024702bb66d978afc48dea": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cc7c081019514b999ec3020e358870ee", + "placeholder": "β", + "style": "IPY_MODEL_e07b0e507c89476bbc397d3f11ecda66", + "value": "β464/464β[00:00<00:00,β10.5kB/s]" + } + }, + "293376904a5141dc91c4c35a0960b2c6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f071bf96a9a540eabbc1680603e15b63": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5fac3de7b57f48a7aa54edbc1597f26f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "76c89b06905f4c4ca33ed41b3c93b672": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bee1ecc5652043a5abaa4077f5e63299": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cc7c081019514b999ec3020e358870ee": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e07b0e507c89476bbc397d3f11ecda66": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "994d720814ee4c2092bbbf826624232d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_486dcf59946c4e0ba8d81454705c4622", + "IPY_MODEL_0fee6dfe3a234304a4f7f762e2322015", + "IPY_MODEL_40234b68c85e436a81d11386c130d5ca" + ], + "layout": "IPY_MODEL_92c9d5e53215423786a2417564b0a223" + } + }, + "486dcf59946c4e0ba8d81454705c4622": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_32a580941e0c4b40aa150dc983f5792f", + "placeholder": "β", + "style": "IPY_MODEL_7211447d333242daa2e4b45ceca5bf80", + "value": "Mapβ(num_proc=2):β100%" + } + }, + "0fee6dfe3a234304a4f7f762e2322015": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_751de11ef70f405bb82c7bea03a02c0f", + "max": 4, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_724ffdc42eaa4a0895cbc7fce511bb4f", + "value": 4 + } + }, + "40234b68c85e436a81d11386c130d5ca": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_45c1a6f5442d412db02dd7ba2690ad90", + "placeholder": "β", + "style": "IPY_MODEL_f219a81178404a0c9e4b3e248d73d589", + "value": "β4/4β[00:01<00:00,ββ3.78βexamples/s]" + } + }, + "92c9d5e53215423786a2417564b0a223": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "32a580941e0c4b40aa150dc983f5792f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7211447d333242daa2e4b45ceca5bf80": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "751de11ef70f405bb82c7bea03a02c0f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "724ffdc42eaa4a0895cbc7fce511bb4f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "45c1a6f5442d412db02dd7ba2690ad90": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f219a81178404a0c9e4b3e248d73d589": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file