harry85 commited on
Commit
ec5abce
1 Parent(s): f533b40

Upload load_pretrained_tinyLLAMA_model_finetuned (2).ipynb

Browse files
load_pretrained_tinyLLAMA_model_finetuned (2).ipynb ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "gpuType": "T4"
8
+ },
9
+ "kernelspec": {
10
+ "name": "python3",
11
+ "display_name": "Python 3"
12
+ },
13
+ "language_info": {
14
+ "name": "python"
15
+ },
16
+ "accelerator": "GPU"
17
+ },
18
+ "cells": [
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": 1,
22
+ "metadata": {
23
+ "id": "Hyg4prvKsTfC"
24
+ },
25
+ "outputs": [],
26
+ "source": [
27
+ "#!pip install bitsandbytes\n"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "source": [
33
+ "#pip install accelerate"
34
+ ],
35
+ "metadata": {
36
+ "id": "MVqLMtMt0Uhc"
37
+ },
38
+ "execution_count": 15,
39
+ "outputs": []
40
+ },
41
+ {
42
+ "cell_type": "code",
43
+ "source": [
44
+ "#!pip install accelerate\n",
45
+ "#!pip install bitsandbytes -i https://pypi.org/simple/\n"
46
+ ],
47
+ "metadata": {
48
+ "id": "BeHjgLP_0laH"
49
+ },
50
+ "execution_count": 16,
51
+ "outputs": []
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "source": [
56
+ "# Load model directly\n",
57
+ "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
58
+ "\n",
59
+ "#tokenizer = AutoTokenizer.from_pretrained(\"harry85/tokenizer-finetuned-TinyLLAMA\")\n",
60
+ "#model = AutoModelForCausalLM.from_pretrained(\"unsloth/tinyllama-bnb-4bit\")\n",
61
+ "# Load model directly\n",
62
+ "#from transformers import AutoTokenizer, AutoModelForCausalLM\n",
63
+ "# Load model directly\n",
64
+ "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
65
+ "\n",
66
+ "tokenizer = AutoTokenizer.from_pretrained(\"harry85/finetuned-TinyLLAMA-own-data-07\")\n",
67
+ "model = AutoModelForCausalLM.from_pretrained(\"harry85/finetuned-TinyLLAMA-own-data-07\")\n",
68
+ "\n",
69
+ "\n",
70
+ "# Enable native 2x faster inference if supported\n",
71
+ "# This feature depends on the specific model and framework used; modify as needed.\n",
72
+ "# For example, in the case of some models, you can use model.half() to convert to FP16 for faster inference.\n",
73
+ "\n",
74
+ "# Define the Alpaca prompt\n",
75
+ "alpaca_prompt = \"\"\"\\\n",
76
+ "### Instruction:\n",
77
+ "{0}\n",
78
+ "\n",
79
+ "### Input:\n",
80
+ "\n",
81
+ "{1}\n",
82
+ "\n",
83
+ "### Response:\n",
84
+ "{2}\"\"\"\n",
85
+ "\n",
86
+ "# Prepare the input\n",
87
+ "inputs = tokenizer(\n",
88
+ " [\n",
89
+ " alpaca_prompt.format(\n",
90
+ " \"Continue the Fibonacci sequence.\", # instruction\n",
91
+ " \"1, 1, 2, 3, 5, 8\", # input\n",
92
+ " \"\" # output - leave this blank for generation!\n",
93
+ " )\n",
94
+ " ],\n",
95
+ " return_tensors=\"pt\"\n",
96
+ ").to(\"cuda\")\n",
97
+ "\n",
98
+ "# Generate the output\n",
99
+ "outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True)\n",
100
+ "\n",
101
+ "# Decode and print the output\n",
102
+ "response = tokenizer.batch_decode(outputs, skip_special_tokens=True)\n",
103
+ "print(response)\n"
104
+ ],
105
+ "metadata": {
106
+ "colab": {
107
+ "base_uri": "https://localhost:8080/"
108
+ },
109
+ "id": "RxlJ3o75sUrN",
110
+ "outputId": "1c767815-7def-42a3-f250-69c7bbe802b7"
111
+ },
112
+ "execution_count": 24,
113
+ "outputs": [
114
+ {
115
+ "output_type": "stream",
116
+ "name": "stderr",
117
+ "text": [
118
+ "Unused kwargs: ['quant_method']. These kwargs are not used in <class 'transformers.utils.quantization_config.BitsAndBytesConfig'>.\n",
119
+ "`low_cpu_mem_usage` was None, now set to True since model is quantized.\n",
120
+ "Some weights of the model checkpoint at harry85/finetuned-TinyLLAMA-own-data-07 were not used when initializing LlamaForCausalLM: ['base_model.model.model.layers.0.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.0.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.0.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.0.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.0.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.0.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.0.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.0.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.0.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.0.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.0.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.0.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.1.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.1.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.1.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.1.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.1.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.1.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.1.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.1.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.1.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.1.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.10.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.10.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.10.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.10.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.10.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.10.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.10.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.10.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.10.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.10.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.11.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.11.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.11.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.11.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.11.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.11.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.11.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.11.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.11.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.11.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.12.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.12.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.12.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.12.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.12.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.12.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.12.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.12.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.12.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.12.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.13.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.13.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.13.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.13.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.13.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.13.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.13.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.13.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.13.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.13.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.14.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.14.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.14.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.14.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.14.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.14.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.14.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.14.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.14.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.14.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.15.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.15.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.15.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.15.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.15.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.15.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.15.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.15.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.15.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.15.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.16.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.16.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.16.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.16.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.16.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.16.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.16.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.16.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.16.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.16.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.17.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.17.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.17.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.17.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.17.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.17.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.17.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.17.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.17.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.17.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.18.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.18.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.18.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.18.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.18.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.18.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.18.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.18.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.18.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.18.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.19.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.19.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.19.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.19.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.19.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.19.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.19.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.19.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.19.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.19.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.2.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.2.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.2.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.2.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.2.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.2.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.2.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.2.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.2.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.2.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.20.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.20.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.20.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.20.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.20.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.20.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.20.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.20.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.20.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.20.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.21.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.21.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.21.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.21.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.21.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.21.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.21.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.21.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.21.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.21.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.3.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.3.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.3.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.3.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.3.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.3.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.3.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.3.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.3.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.3.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.4.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.4.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.4.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.4.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.4.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.4.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.4.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.4.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.4.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.4.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.5.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.5.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.5.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.5.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.5.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.5.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.5.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.5.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.5.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.5.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.6.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.6.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.6.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.6.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.6.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.6.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.6.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.6.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.6.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.6.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.7.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.7.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.7.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.7.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.7.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.7.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.7.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.7.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.7.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.7.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.8.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.8.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.8.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.8.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.8.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.8.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.8.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.8.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.8.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.8.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_B.weight', 'base_model.model.model.layers.9.mlp.down_proj.lora_A.weight', 'base_model.model.model.layers.9.mlp.down_proj.lora_B.weight', 'base_model.model.model.layers.9.mlp.gate_proj.lora_A.weight', 'base_model.model.model.layers.9.mlp.gate_proj.lora_B.weight', 'base_model.model.model.layers.9.mlp.up_proj.lora_A.weight', 'base_model.model.model.layers.9.mlp.up_proj.lora_B.weight', 'base_model.model.model.layers.9.self_attn.k_proj.lora_A.weight', 'base_model.model.model.layers.9.self_attn.k_proj.lora_B.weight', 'base_model.model.model.layers.9.self_attn.o_proj.lora_A.weight', 'base_model.model.model.layers.9.self_attn.o_proj.lora_B.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_A.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_B.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_A.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_B.weight']\n",
121
+ "- This IS expected if you are initializing LlamaForCausalLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
122
+ "- This IS NOT expected if you are initializing LlamaForCausalLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
123
+ "Some weights of LlamaForCausalLM were not initialized from the model checkpoint at harry85/finetuned-TinyLLAMA-own-data-07 and are newly initialized: ['embed_tokens.weight', 'layers.0.input_layernorm.weight', 'layers.0.mlp.down_proj.weight', 'layers.0.mlp.gate_proj.weight', 'layers.0.mlp.up_proj.weight', 'layers.0.post_attention_layernorm.weight', 'layers.0.self_attn.k_proj.weight', 'layers.0.self_attn.o_proj.weight', 'layers.0.self_attn.q_proj.weight', 'layers.0.self_attn.v_proj.weight', 'layers.1.input_layernorm.weight', 'layers.1.mlp.down_proj.weight', 'layers.1.mlp.gate_proj.weight', 'layers.1.mlp.up_proj.weight', 'layers.1.post_attention_layernorm.weight', 'layers.1.self_attn.k_proj.weight', 'layers.1.self_attn.o_proj.weight', 'layers.1.self_attn.q_proj.weight', 'layers.1.self_attn.v_proj.weight', 'layers.10.input_layernorm.weight', 'layers.10.mlp.down_proj.weight', 'layers.10.mlp.gate_proj.weight', 'layers.10.mlp.up_proj.weight', 'layers.10.post_attention_layernorm.weight', 'layers.10.self_attn.k_proj.weight', 'layers.10.self_attn.o_proj.weight', 'layers.10.self_attn.q_proj.weight', 'layers.10.self_attn.v_proj.weight', 'layers.11.input_layernorm.weight', 'layers.11.mlp.down_proj.weight', 'layers.11.mlp.gate_proj.weight', 'layers.11.mlp.up_proj.weight', 'layers.11.post_attention_layernorm.weight', 'layers.11.self_attn.k_proj.weight', 'layers.11.self_attn.o_proj.weight', 'layers.11.self_attn.q_proj.weight', 'layers.11.self_attn.v_proj.weight', 'layers.12.input_layernorm.weight', 'layers.12.mlp.down_proj.weight', 'layers.12.mlp.gate_proj.weight', 'layers.12.mlp.up_proj.weight', 'layers.12.post_attention_layernorm.weight', 'layers.12.self_attn.k_proj.weight', 'layers.12.self_attn.o_proj.weight', 'layers.12.self_attn.q_proj.weight', 'layers.12.self_attn.v_proj.weight', 'layers.13.input_layernorm.weight', 'layers.13.mlp.down_proj.weight', 'layers.13.mlp.gate_proj.weight', 'layers.13.mlp.up_proj.weight', 'layers.13.post_attention_layernorm.weight', 'layers.13.self_attn.k_proj.weight', 'layers.13.self_attn.o_proj.weight', 'layers.13.self_attn.q_proj.weight', 'layers.13.self_attn.v_proj.weight', 'layers.14.input_layernorm.weight', 'layers.14.mlp.down_proj.weight', 'layers.14.mlp.gate_proj.weight', 'layers.14.mlp.up_proj.weight', 'layers.14.post_attention_layernorm.weight', 'layers.14.self_attn.k_proj.weight', 'layers.14.self_attn.o_proj.weight', 'layers.14.self_attn.q_proj.weight', 'layers.14.self_attn.v_proj.weight', 'layers.15.input_layernorm.weight', 'layers.15.mlp.down_proj.weight', 'layers.15.mlp.gate_proj.weight', 'layers.15.mlp.up_proj.weight', 'layers.15.post_attention_layernorm.weight', 'layers.15.self_attn.k_proj.weight', 'layers.15.self_attn.o_proj.weight', 'layers.15.self_attn.q_proj.weight', 'layers.15.self_attn.v_proj.weight', 'layers.16.input_layernorm.weight', 'layers.16.mlp.down_proj.weight', 'layers.16.mlp.gate_proj.weight', 'layers.16.mlp.up_proj.weight', 'layers.16.post_attention_layernorm.weight', 'layers.16.self_attn.k_proj.weight', 'layers.16.self_attn.o_proj.weight', 'layers.16.self_attn.q_proj.weight', 'layers.16.self_attn.v_proj.weight', 'layers.17.input_layernorm.weight', 'layers.17.mlp.down_proj.weight', 'layers.17.mlp.gate_proj.weight', 'layers.17.mlp.up_proj.weight', 'layers.17.post_attention_layernorm.weight', 'layers.17.self_attn.k_proj.weight', 'layers.17.self_attn.o_proj.weight', 'layers.17.self_attn.q_proj.weight', 'layers.17.self_attn.v_proj.weight', 'layers.18.input_layernorm.weight', 'layers.18.mlp.down_proj.weight', 'layers.18.mlp.gate_proj.weight', 'layers.18.mlp.up_proj.weight', 'layers.18.post_attention_layernorm.weight', 'layers.18.self_attn.k_proj.weight', 'layers.18.self_attn.o_proj.weight', 'layers.18.self_attn.q_proj.weight', 'layers.18.self_attn.v_proj.weight', 'layers.19.input_layernorm.weight', 'layers.19.mlp.down_proj.weight', 'layers.19.mlp.gate_proj.weight', 'layers.19.mlp.up_proj.weight', 'layers.19.post_attention_layernorm.weight', 'layers.19.self_attn.k_proj.weight', 'layers.19.self_attn.o_proj.weight', 'layers.19.self_attn.q_proj.weight', 'layers.19.self_attn.v_proj.weight', 'layers.2.input_layernorm.weight', 'layers.2.mlp.down_proj.weight', 'layers.2.mlp.gate_proj.weight', 'layers.2.mlp.up_proj.weight', 'layers.2.post_attention_layernorm.weight', 'layers.2.self_attn.k_proj.weight', 'layers.2.self_attn.o_proj.weight', 'layers.2.self_attn.q_proj.weight', 'layers.2.self_attn.v_proj.weight', 'layers.20.input_layernorm.weight', 'layers.20.mlp.down_proj.weight', 'layers.20.mlp.gate_proj.weight', 'layers.20.mlp.up_proj.weight', 'layers.20.post_attention_layernorm.weight', 'layers.20.self_attn.k_proj.weight', 'layers.20.self_attn.o_proj.weight', 'layers.20.self_attn.q_proj.weight', 'layers.20.self_attn.v_proj.weight', 'layers.21.input_layernorm.weight', 'layers.21.mlp.down_proj.weight', 'layers.21.mlp.gate_proj.weight', 'layers.21.mlp.up_proj.weight', 'layers.21.post_attention_layernorm.weight', 'layers.21.self_attn.k_proj.weight', 'layers.21.self_attn.o_proj.weight', 'layers.21.self_attn.q_proj.weight', 'layers.21.self_attn.v_proj.weight', 'layers.3.input_layernorm.weight', 'layers.3.mlp.down_proj.weight', 'layers.3.mlp.gate_proj.weight', 'layers.3.mlp.up_proj.weight', 'layers.3.post_attention_layernorm.weight', 'layers.3.self_attn.k_proj.weight', 'layers.3.self_attn.o_proj.weight', 'layers.3.self_attn.q_proj.weight', 'layers.3.self_attn.v_proj.weight', 'layers.4.input_layernorm.weight', 'layers.4.mlp.down_proj.weight', 'layers.4.mlp.gate_proj.weight', 'layers.4.mlp.up_proj.weight', 'layers.4.post_attention_layernorm.weight', 'layers.4.self_attn.k_proj.weight', 'layers.4.self_attn.o_proj.weight', 'layers.4.self_attn.q_proj.weight', 'layers.4.self_attn.v_proj.weight', 'layers.5.input_layernorm.weight', 'layers.5.mlp.down_proj.weight', 'layers.5.mlp.gate_proj.weight', 'layers.5.mlp.up_proj.weight', 'layers.5.post_attention_layernorm.weight', 'layers.5.self_attn.k_proj.weight', 'layers.5.self_attn.o_proj.weight', 'layers.5.self_attn.q_proj.weight', 'layers.5.self_attn.v_proj.weight', 'layers.6.input_layernorm.weight', 'layers.6.mlp.down_proj.weight', 'layers.6.mlp.gate_proj.weight', 'layers.6.mlp.up_proj.weight', 'layers.6.post_attention_layernorm.weight', 'layers.6.self_attn.k_proj.weight', 'layers.6.self_attn.o_proj.weight', 'layers.6.self_attn.q_proj.weight', 'layers.6.self_attn.v_proj.weight', 'layers.7.input_layernorm.weight', 'layers.7.mlp.down_proj.weight', 'layers.7.mlp.gate_proj.weight', 'layers.7.mlp.up_proj.weight', 'layers.7.post_attention_layernorm.weight', 'layers.7.self_attn.k_proj.weight', 'layers.7.self_attn.o_proj.weight', 'layers.7.self_attn.q_proj.weight', 'layers.7.self_attn.v_proj.weight', 'layers.8.input_layernorm.weight', 'layers.8.mlp.down_proj.weight', 'layers.8.mlp.gate_proj.weight', 'layers.8.mlp.up_proj.weight', 'layers.8.post_attention_layernorm.weight', 'layers.8.self_attn.k_proj.weight', 'layers.8.self_attn.o_proj.weight', 'layers.8.self_attn.q_proj.weight', 'layers.8.self_attn.v_proj.weight', 'layers.9.input_layernorm.weight', 'layers.9.mlp.down_proj.weight', 'layers.9.mlp.gate_proj.weight', 'layers.9.mlp.up_proj.weight', 'layers.9.post_attention_layernorm.weight', 'layers.9.self_attn.k_proj.weight', 'layers.9.self_attn.o_proj.weight', 'layers.9.self_attn.q_proj.weight', 'layers.9.self_attn.v_proj.weight', 'lm_head.weight', 'norm.weight']\n",
124
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
125
+ ]
126
+ },
127
+ {
128
+ "output_type": "stream",
129
+ "name": "stdout",
130
+ "text": [
131
+ "['### Instruction:\\nContinue the Fibonacci sequence.\\n\\n### Input:\\n\\n1, 1, 2, 3, 5, 8\\n\\n### Response:\\n']\n"
132
+ ]
133
+ }
134
+ ]
135
+ },
136
+ {
137
+ "cell_type": "code",
138
+ "source": [
139
+ "if False:\n",
140
+ " from unsloth import FastLanguageModel\n",
141
+ " model, tokenizer = FastLanguageModel.from_pretrained(\n",
142
+ " model_name = \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
143
+ " max_seq_length = max_seq_length,\n",
144
+ " dtype = dtype,\n",
145
+ " load_in_4bit = load_in_4bit,\n",
146
+ " )\n",
147
+ " FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
148
+ "\n",
149
+ "# alpaca_prompt = You MUST copy from above!\n",
150
+ "\n",
151
+ "inputs = tokenizer(\n",
152
+ "[\n",
153
+ " alpaca_prompt.format(\n",
154
+ " \"which country Haris Hota live\", # instruction\n",
155
+ " \"Haris Hota\", # input\n",
156
+ " \"\", # output - leave this blank for generation!\n",
157
+ " )\n",
158
+ "], return_tensors = \"pt\").to(\"cuda\")\n",
159
+ "\n",
160
+ "from transformers import TextStreamer\n",
161
+ "text_streamer = TextStreamer(tokenizer)\n",
162
+ "_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 64)"
163
+ ],
164
+ "metadata": {
165
+ "colab": {
166
+ "base_uri": "https://localhost:8080/"
167
+ },
168
+ "id": "IuUufGQz5BBR",
169
+ "outputId": "07f59e9c-a09e-484c-df1f-406f6e75e36b"
170
+ },
171
+ "execution_count": 26,
172
+ "outputs": [
173
+ {
174
+ "output_type": "stream",
175
+ "name": "stdout",
176
+ "text": [
177
+ "<s> ### Instruction:\n",
178
+ "which country Haris Hota live\n",
179
+ "\n",
180
+ "### Input:\n",
181
+ "\n",
182
+ "Haris Hota\n",
183
+ "\n",
184
+ "### Response:\n",
185
+ "<unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><unk>\n"
186
+ ]
187
+ }
188
+ ]
189
+ },
190
+ {
191
+ "cell_type": "code",
192
+ "source": [],
193
+ "metadata": {
194
+ "id": "aTqhZ5y1533Y"
195
+ },
196
+ "execution_count": null,
197
+ "outputs": []
198
+ }
199
+ ]
200
+ }