harryrudolph commited on
Commit
ca84aea
·
1 Parent(s): 1780ff8

initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -137.96 +/- 24.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc1aa2eb160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc1aa2eb1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc1aa2eb280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc1aa2eb310>", "_build": "<function ActorCriticPolicy._build at 0x7fc1aa2eb3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc1aa2eb430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc1aa2eb4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc1aa2eb550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc1aa2eb5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc1aa2eb670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc1aa2eb700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc1aa2e6660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 229376, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670271492676168066, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABwdLwqS7I//ZbGvhfxdb7ebIs81h4CPgAAAAAAAAAA4z7yPvdGAL57SGG8/l8avRAQiT6R1x+9AAAAAAAAAAAN6UY/gGCQvVZETTwPw+w9WlS2PXZdHz4AAAAAAAAAAJoZeLxc63G6yVCoOzygC7yWmo27FjaWvAAAgD8AAIA/ADJjPYXDjblWGJ47wMNKtv34sLrV1Ui1AACAPwAAgD/N3I87/3G0PxOs4z5941i96Hmmu91Izr0AAAAAAAAAAGo5zj7fT3I/o7zRPvNcvL6nYoY+GvHyPAAAAAAAAAAAmp7mPRQenrq7CzW9ToQqvYzxhbuAZhW+AAAAAAAAgD9AV7s9j6IeOWIZirsCl8u2zzuhO0nRozoAAIA/AACAP81hL767x5I/+ACpvkkCjr4+YaE7vfLEvQAAAAAAAAAAgI8vv2lYRb5DrCa7rkWquZHnJ70Nc7+4AACAPwAAgD+aqTi8hYOXuR603jwEQ262TtiKO4K5aLUAAIA/AACAP6Owob67VIS8ws1oveu6wbrlMPQ9X/wdPQAAAAAAAAAAoOO4PqBKqz9OCcM+QQCfvkJVLj0FFw29AAAAAAAAAAAeb+O+NgVVvAeiijv0lw44wNhGvD7A+DkAAIA/AACAP8ZqDj88c5m9mx3APEyls7xfOla9vmEBPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAQAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdXedDfkn9b+UhpRSlIwBbJRL04wBdJRHQH7bFyzXz191fZQoaAZoCWgPQwh8e9egL/ZaQJSGlFKUaBVN6ANoFkdAft0Motthu3V9lChoBmgJaA9DCIZzDTM0ojPAlIaUUpRoFUt6aBZHQH7epXIU8FJ1fZQoaAZoCWgPQwhKfVnaqZ04QJSGlFKUaBVN6ANoFkdAft/KU3XI2nV9lChoBmgJaA9DCMDrM2d9fjvAlIaUUpRoFUuYaBZHQH7ifqxC6Yp1fZQoaAZoCWgPQwgGuCBblk8fwJSGlFKUaBVLpGgWR0B+492jfvWpdX2UKGgGaAloD0MIbAa4IFueK0CUhpRSlGgVS5NoFkdAfuTUpuuRtHV9lChoBmgJaA9DCBUdyeU/ODpAlIaUUpRoFUumaBZHQH7lnRCx/ut1fZQoaAZoCWgPQwiZY3lXPYAWQJSGlFKUaBVLdmgWR0B+5jcoH9m6dX2UKGgGaAloD0MIzse1oWIsPsCUhpRSlGgVS39oFkdAfuoNn5BToHV9lChoBmgJaA9DCD/iV6zhtE3AlIaUUpRoFUveaBZHQH7qb0aqCH11fZQoaAZoCWgPQwg97lutE7cxwJSGlFKUaBVLrGgWR0B+7QEhaC+UdX2UKGgGaAloD0MIOPbsuUytIsCUhpRSlGgVS5NoFkdAfu+MOf/WD3V9lChoBmgJaA9DCLcpHhfVVjxAlIaUUpRoFUvUaBZHQH7wUy57PY51fZQoaAZoCWgPQwj6uaEpO6tRwJSGlFKUaBVLuGgWR0B+8nrpqynldX2UKGgGaAloD0MIgzXOpiNQRECUhpRSlGgVS7NoFkdAfvSjPv8ZUHV9lChoBmgJaA9DCCApIsMqHvc/lIaUUpRoFUuqaBZHQH72cewLVnV1fZQoaAZoCWgPQwh/wW7YttApQJSGlFKUaBVLg2gWR0B++mSwGGEgdX2UKGgGaAloD0MIOnXlszzPH0CUhpRSlGgVS7ZoFkdAfvqTSsr/bXV9lChoBmgJaA9DCJUrvMtF8kDAlIaUUpRoFUuraBZHQH76xZMcp9Z1fZQoaAZoCWgPQwjMRBFSt+MrQJSGlFKUaBVLsWgWR0B++te2NNrTdX2UKGgGaAloD0MInu488ZxhN8CUhpRSlGgVS2JoFkdAfvuxPfsNUnV9lChoBmgJaA9DCAMHtHQFZzjAlIaUUpRoFUvuaBZHQH8AajBVMmF1fZQoaAZoCWgPQwgip6/nawYrQJSGlFKUaBVLlGgWR0B/AsTM7lq8dX2UKGgGaAloD0MIIjmZuFXAP8CUhpRSlGgVS4BoFkdAfwSuW8h9s3V9lChoBmgJaA9DCE/ltKfkvB3AlIaUUpRoFUvBaBZHQH8FAMH8jzJ1fZQoaAZoCWgPQwhSSDKrdwpEwJSGlFKUaBVL5mgWR0B/Bm9Zid8RdX2UKGgGaAloD0MIKLou/OCIPcCUhpRSlGgVS2xoFkdAfwgyDZlFt3V9lChoBmgJaA9DCI1+NJwyyUHAlIaUUpRoFUt0aBZHQH8JEkGA09B1fZQoaAZoCWgPQwgRbcfUXUkqQJSGlFKUaBVLxGgWR0B/CxVtGd7OdX2UKGgGaAloD0MIaTum7sokaMCUhpRSlGgVTVMCaBZHQH8LW9lEqlR1fZQoaAZoCWgPQwgsuYrFb64/QJSGlFKUaBVLpmgWR0CAVz+MqBmPdX2UKGgGaAloD0MIQiECDqECKMCUhpRSlGgVS7JoFkdAgFhuK4x1xXV9lChoBmgJaA9DCF2JQPUPwirAlIaUUpRoFUvFaBZHQIBZJEa2nbZ1fZQoaAZoCWgPQwgRyCWOPHBDQJSGlFKUaBVLfWgWR0CAWcLDQ7cPdX2UKGgGaAloD0MIM+AsJcs9N8CUhpRSlGgVS6RoFkdAgFn86mwaBXV9lChoBmgJaA9DCAQb17/rIyXAlIaUUpRoFUt+aBZHQIBajBhx5s11fZQoaAZoCWgPQwgWo66198JZQJSGlFKUaBVN6ANoFkdAgFuLDZUT+XV9lChoBmgJaA9DCPCiryDNWNK/lIaUUpRoFUuraBZHQIBcZmXgLql1fZQoaAZoCWgPQwicxYuFIcIlQJSGlFKUaBVLmWgWR0CAXVwrDqGDdX2UKGgGaAloD0MIuCIxQQ09QECUhpRSlGgVS9JoFkdAgGJp1JUYK3V9lChoBmgJaA9DCEg3wqIi1VtAlIaUUpRoFU3oA2gWR0CAYpo0Q9RrdX2UKGgGaAloD0MI2UC62LSyA8CUhpRSlGgVS69oFkdAgGS0LlV94XV9lChoBmgJaA9DCG7DKAgeozhAlIaUUpRoFUuuaBZHQIBlU7GNrCZ1fZQoaAZoCWgPQwhcyvli7z9GwJSGlFKUaBVLsmgWR0CAZdwDNhVmdX2UKGgGaAloD0MIdSLBVDMfOcCUhpRSlGgVS6loFkdAgGcU4BFNL3V9lChoBmgJaA9DCIs2x7lNMDvAlIaUUpRoFU0pAWgWR0CAaNHGS6lMdX2UKGgGaAloD0MIxr5k48EWNUCUhpRSlGgVTegDaBZHQIBoz8P4EfV1fZQoaAZoCWgPQwhCsoAJ3I9RwJSGlFKUaBVNVQFoFkdAgGoQWnCO3nV9lChoBmgJaA9DCDLohNBB80vAlIaUUpRoFU0SAWgWR0CAbQ5qdpZfdX2UKGgGaAloD0MIjZjZ5zGiMsCUhpRSlGgVS9JoFkdAgHQaYNRWLnV9lChoBmgJaA9DCI9wWvCir+2/lIaUUpRoFU0CAWgWR0CAgUV6/qPfdX2UKGgGaAloD0MIuTZUjPNDRMCUhpRSlGgVTWgBaBZHQICDJEroW591fZQoaAZoCWgPQwhtA3egTuErwJSGlFKUaBVLy2gWR0CAjcCPIXCTdX2UKGgGaAloD0MIcEG2LF8XB8CUhpRSlGgVS71oFkdAgKGTNt65XnV9lChoBmgJaA9DCIv/O6JC6UbAlIaUUpRoFUvSaBZHQICiSYeDFqB1fZQoaAZoCWgPQwgF3PP8aYpWQJSGlFKUaBVN6ANoFkdAgLBv5HmRvHV9lChoBmgJaA9DCHP3OT5anNC/lIaUUpRoFUvwaBZHQIC6Bvo/zJ91fZQoaAZoCWgPQwi4ByEgXz4zwJSGlFKUaBVN6ANoFkdAgL/yDqW1MXV9lChoBmgJaA9DCFBR9Sud8UDAlIaUUpRoFUujaBZHQIDKHaBZpzt1fZQoaAZoCWgPQwg51VqYhVZUQJSGlFKUaBVN6ANoFkdAgNAyHmA9V3V9lChoBmgJaA9DCExSmWIOXjBAlIaUUpRoFU3oA2gWR0CA0wM7U5MldX2UKGgGaAloD0MIlpLlJJSkW0CUhpRSlGgVTegDaBZHQIDcayOaOPx1fZQoaAZoCWgPQwh5knTN5EdHwJSGlFKUaBVL52gWR0CA3UZJCjUNdX2UKGgGaAloD0MIvFgYIqcUUUCUhpRSlGgVTegDaBZHQIDf0CHRCyB1fZQoaAZoCWgPQwiYbaetEREXQJSGlFKUaBVL22gWR0CA4i5QxesxdX2UKGgGaAloD0MI/kY7bvj1JECUhpRSlGgVS5poFkdAgOjl1r6+FnV9lChoBmgJaA9DCGuBPSZSHktAlIaUUpRoFU3oA2gWR0CA64RW912adX2UKGgGaAloD0MI9P4/TpigI0CUhpRSlGgVS7BoFkdAgO6e3H7xeHV9lChoBmgJaA9DCDxKJTyhPVZAlIaUUpRoFU3oA2gWR0CA8edBjWkKdX2UKGgGaAloD0MIRDaQLjZxMECUhpRSlGgVTegDaBZHQIDyyP+4smR1fZQoaAZoCWgPQwj4UKIlj7pTQJSGlFKUaBVN6ANoFkdAgPRrdepn6HV9lChoBmgJaA9DCOny5nCtsERAlIaUUpRoFU3oA2gWR0CA9tZJTVDsdX2UKGgGaAloD0MIAiuHFllKYECUhpRSlGgVTegDaBZHQID6BXr+o991fZQoaAZoCWgPQwh8f4P26gMNQJSGlFKUaBVL1mgWR0CA/Hl0YCQtdX2UKGgGaAloD0MIELBW7ZpAUkCUhpRSlGgVTegDaBZHQID98VJtix51fZQoaAZoCWgPQwgKFLGIYScNQJSGlFKUaBVL/WgWR0CA/xMPBi1BdX2UKGgGaAloD0MIcw8J3/tbKUCUhpRSlGgVS8loFkdAgQHcwYcebXV9lChoBmgJaA9DCP1JfO4EszXAlIaUUpRoFU0BAWgWR0CBAdw3o9s8dX2UKGgGaAloD0MIbf30nzVXMkCUhpRSlGgVS7NoFkdAgQM0ALiMpHV9lChoBmgJaA9DCPlkxXB1UBXAlIaUUpRoFUvcaBZHQIEGzaXa8Hx1fZQoaAZoCWgPQwhNofMau4QFwJSGlFKUaBVLdWgWR0CBB70EHMUzdX2UKGgGaAloD0MI0qqWdJTLQUCUhpRSlGgVS5hoFkdAgQi1L8Jla3V9lChoBmgJaA9DCLU3+MJkqvU/lIaUUpRoFUvRaBZHQIEK8H4XXRR1fZQoaAZoCWgPQwiZt+o6VGc3wJSGlFKUaBVL/mgWR0CBDUVKPGQ0dX2UKGgGaAloD0MI9KRMamgzLUCUhpRSlGgVS91oFkdAgRyn5i3G43V9lChoBmgJaA9DCFNCsKpejkzAlIaUUpRoFU0PAWgWR0CBH91oQFs6dX2UKGgGaAloD0MIp3oy/+gzQMCUhpRSlGgVS7VoFkdAgSAV5B1LanV9lChoBmgJaA9DCDUJ3pBGhRpAlIaUUpRoFUvIaBZHQIEg7Q/oq1B1fZQoaAZoCWgPQwg+JHzvb/daQJSGlFKUaBVN6ANoFkdAgSz0gSvkinV9lChoBmgJaA9DCLh1N091qBxAlIaUUpRoFU0gAWgWR0CBLYNedCmedX2UKGgGaAloD0MIXVMgs7POUkCUhpRSlGgVTegDaBZHQIEthWHUMG51fZQoaAZoCWgPQwhQjZduEtM3QJSGlFKUaBVLt2gWR0CBN36gM+eOdX2UKGgGaAloD0MIflNYqaDiF0CUhpRSlGgVS55oFkdAgTjigkC3gHV9lChoBmgJaA9DCIIeatswREDAlIaUUpRoFUvjaBZHQIFAsV32VVx1fZQoaAZoCWgPQwgCnx9GCFtFwJSGlFKUaBVLkWgWR0CBSg5MlC1JdX2UKGgGaAloD0MIZTcz+tGkNcCUhpRSlGgVS99oFkdAgUugo5PuX3V9lChoBmgJaA9DCHwm++dpyFJAlIaUUpRoFU3oA2gWR0CBTSDvmYBvdX2UKGgGaAloD0MIMBFvnX+hRsCUhpRSlGgVS9NoFkdAgVS5QP7N0XV9lChoBmgJaA9DCN20GachwkBAlIaUUpRoFUuTaBZHQIFVSFIuoP11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
moonlander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d97e8d7d8734c19d43cd28e91b7b01f17dadf28f97dbbebafd43cf3733b9de83
3
+ size 147056
moonlander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
moonlander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc1aa2eb160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc1aa2eb1f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc1aa2eb280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc1aa2eb310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc1aa2eb3a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc1aa2eb430>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc1aa2eb4c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc1aa2eb550>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc1aa2eb5e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc1aa2eb670>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc1aa2eb700>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc1aa2e6660>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 229376,
46
+ "_total_timesteps": 200000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670271492676168066,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABwdLwqS7I//ZbGvhfxdb7ebIs81h4CPgAAAAAAAAAA4z7yPvdGAL57SGG8/l8avRAQiT6R1x+9AAAAAAAAAAAN6UY/gGCQvVZETTwPw+w9WlS2PXZdHz4AAAAAAAAAAJoZeLxc63G6yVCoOzygC7yWmo27FjaWvAAAgD8AAIA/ADJjPYXDjblWGJ47wMNKtv34sLrV1Ui1AACAPwAAgD/N3I87/3G0PxOs4z5941i96Hmmu91Izr0AAAAAAAAAAGo5zj7fT3I/o7zRPvNcvL6nYoY+GvHyPAAAAAAAAAAAmp7mPRQenrq7CzW9ToQqvYzxhbuAZhW+AAAAAAAAgD9AV7s9j6IeOWIZirsCl8u2zzuhO0nRozoAAIA/AACAP81hL767x5I/+ACpvkkCjr4+YaE7vfLEvQAAAAAAAAAAgI8vv2lYRb5DrCa7rkWquZHnJ70Nc7+4AACAPwAAgD+aqTi8hYOXuR603jwEQ262TtiKO4K5aLUAAIA/AACAP6Owob67VIS8ws1oveu6wbrlMPQ9X/wdPQAAAAAAAAAAoOO4PqBKqz9OCcM+QQCfvkJVLj0FFw29AAAAAAAAAAAeb+O+NgVVvAeiijv0lw44wNhGvD7A+DkAAIA/AACAP8ZqDj88c5m9mx3APEyls7xfOla9vmEBPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAQAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.1468799999999999,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVOxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdXedDfkn9b+UhpRSlIwBbJRL04wBdJRHQH7bFyzXz191fZQoaAZoCWgPQwh8e9egL/ZaQJSGlFKUaBVN6ANoFkdAft0Motthu3V9lChoBmgJaA9DCIZzDTM0ojPAlIaUUpRoFUt6aBZHQH7epXIU8FJ1fZQoaAZoCWgPQwhKfVnaqZ04QJSGlFKUaBVN6ANoFkdAft/KU3XI2nV9lChoBmgJaA9DCMDrM2d9fjvAlIaUUpRoFUuYaBZHQH7ifqxC6Yp1fZQoaAZoCWgPQwgGuCBblk8fwJSGlFKUaBVLpGgWR0B+492jfvWpdX2UKGgGaAloD0MIbAa4IFueK0CUhpRSlGgVS5NoFkdAfuTUpuuRtHV9lChoBmgJaA9DCBUdyeU/ODpAlIaUUpRoFUumaBZHQH7lnRCx/ut1fZQoaAZoCWgPQwiZY3lXPYAWQJSGlFKUaBVLdmgWR0B+5jcoH9m6dX2UKGgGaAloD0MIzse1oWIsPsCUhpRSlGgVS39oFkdAfuoNn5BToHV9lChoBmgJaA9DCD/iV6zhtE3AlIaUUpRoFUveaBZHQH7qb0aqCH11fZQoaAZoCWgPQwg97lutE7cxwJSGlFKUaBVLrGgWR0B+7QEhaC+UdX2UKGgGaAloD0MIOPbsuUytIsCUhpRSlGgVS5NoFkdAfu+MOf/WD3V9lChoBmgJaA9DCLcpHhfVVjxAlIaUUpRoFUvUaBZHQH7wUy57PY51fZQoaAZoCWgPQwj6uaEpO6tRwJSGlFKUaBVLuGgWR0B+8nrpqynldX2UKGgGaAloD0MIgzXOpiNQRECUhpRSlGgVS7NoFkdAfvSjPv8ZUHV9lChoBmgJaA9DCCApIsMqHvc/lIaUUpRoFUuqaBZHQH72cewLVnV1fZQoaAZoCWgPQwh/wW7YttApQJSGlFKUaBVLg2gWR0B++mSwGGEgdX2UKGgGaAloD0MIOnXlszzPH0CUhpRSlGgVS7ZoFkdAfvqTSsr/bXV9lChoBmgJaA9DCJUrvMtF8kDAlIaUUpRoFUuraBZHQH76xZMcp9Z1fZQoaAZoCWgPQwjMRBFSt+MrQJSGlFKUaBVLsWgWR0B++te2NNrTdX2UKGgGaAloD0MInu488ZxhN8CUhpRSlGgVS2JoFkdAfvuxPfsNUnV9lChoBmgJaA9DCAMHtHQFZzjAlIaUUpRoFUvuaBZHQH8AajBVMmF1fZQoaAZoCWgPQwgip6/nawYrQJSGlFKUaBVLlGgWR0B/AsTM7lq8dX2UKGgGaAloD0MIIjmZuFXAP8CUhpRSlGgVS4BoFkdAfwSuW8h9s3V9lChoBmgJaA9DCE/ltKfkvB3AlIaUUpRoFUvBaBZHQH8FAMH8jzJ1fZQoaAZoCWgPQwhSSDKrdwpEwJSGlFKUaBVL5mgWR0B/Bm9Zid8RdX2UKGgGaAloD0MIKLou/OCIPcCUhpRSlGgVS2xoFkdAfwgyDZlFt3V9lChoBmgJaA9DCI1+NJwyyUHAlIaUUpRoFUt0aBZHQH8JEkGA09B1fZQoaAZoCWgPQwgRbcfUXUkqQJSGlFKUaBVLxGgWR0B/CxVtGd7OdX2UKGgGaAloD0MIaTum7sokaMCUhpRSlGgVTVMCaBZHQH8LW9lEqlR1fZQoaAZoCWgPQwgsuYrFb64/QJSGlFKUaBVLpmgWR0CAVz+MqBmPdX2UKGgGaAloD0MIQiECDqECKMCUhpRSlGgVS7JoFkdAgFhuK4x1xXV9lChoBmgJaA9DCF2JQPUPwirAlIaUUpRoFUvFaBZHQIBZJEa2nbZ1fZQoaAZoCWgPQwgRyCWOPHBDQJSGlFKUaBVLfWgWR0CAWcLDQ7cPdX2UKGgGaAloD0MIM+AsJcs9N8CUhpRSlGgVS6RoFkdAgFn86mwaBXV9lChoBmgJaA9DCAQb17/rIyXAlIaUUpRoFUt+aBZHQIBajBhx5s11fZQoaAZoCWgPQwgWo66198JZQJSGlFKUaBVN6ANoFkdAgFuLDZUT+XV9lChoBmgJaA9DCPCiryDNWNK/lIaUUpRoFUuraBZHQIBcZmXgLql1fZQoaAZoCWgPQwicxYuFIcIlQJSGlFKUaBVLmWgWR0CAXVwrDqGDdX2UKGgGaAloD0MIuCIxQQ09QECUhpRSlGgVS9JoFkdAgGJp1JUYK3V9lChoBmgJaA9DCEg3wqIi1VtAlIaUUpRoFU3oA2gWR0CAYpo0Q9RrdX2UKGgGaAloD0MI2UC62LSyA8CUhpRSlGgVS69oFkdAgGS0LlV94XV9lChoBmgJaA9DCG7DKAgeozhAlIaUUpRoFUuuaBZHQIBlU7GNrCZ1fZQoaAZoCWgPQwhcyvli7z9GwJSGlFKUaBVLsmgWR0CAZdwDNhVmdX2UKGgGaAloD0MIdSLBVDMfOcCUhpRSlGgVS6loFkdAgGcU4BFNL3V9lChoBmgJaA9DCIs2x7lNMDvAlIaUUpRoFU0pAWgWR0CAaNHGS6lMdX2UKGgGaAloD0MIxr5k48EWNUCUhpRSlGgVTegDaBZHQIBoz8P4EfV1fZQoaAZoCWgPQwhCsoAJ3I9RwJSGlFKUaBVNVQFoFkdAgGoQWnCO3nV9lChoBmgJaA9DCDLohNBB80vAlIaUUpRoFU0SAWgWR0CAbQ5qdpZfdX2UKGgGaAloD0MIjZjZ5zGiMsCUhpRSlGgVS9JoFkdAgHQaYNRWLnV9lChoBmgJaA9DCI9wWvCir+2/lIaUUpRoFU0CAWgWR0CAgUV6/qPfdX2UKGgGaAloD0MIuTZUjPNDRMCUhpRSlGgVTWgBaBZHQICDJEroW591fZQoaAZoCWgPQwhtA3egTuErwJSGlFKUaBVLy2gWR0CAjcCPIXCTdX2UKGgGaAloD0MIcEG2LF8XB8CUhpRSlGgVS71oFkdAgKGTNt65XnV9lChoBmgJaA9DCIv/O6JC6UbAlIaUUpRoFUvSaBZHQICiSYeDFqB1fZQoaAZoCWgPQwgF3PP8aYpWQJSGlFKUaBVN6ANoFkdAgLBv5HmRvHV9lChoBmgJaA9DCHP3OT5anNC/lIaUUpRoFUvwaBZHQIC6Bvo/zJ91fZQoaAZoCWgPQwi4ByEgXz4zwJSGlFKUaBVN6ANoFkdAgL/yDqW1MXV9lChoBmgJaA9DCFBR9Sud8UDAlIaUUpRoFUujaBZHQIDKHaBZpzt1fZQoaAZoCWgPQwg51VqYhVZUQJSGlFKUaBVN6ANoFkdAgNAyHmA9V3V9lChoBmgJaA9DCExSmWIOXjBAlIaUUpRoFU3oA2gWR0CA0wM7U5MldX2UKGgGaAloD0MIlpLlJJSkW0CUhpRSlGgVTegDaBZHQIDcayOaOPx1fZQoaAZoCWgPQwh5knTN5EdHwJSGlFKUaBVL52gWR0CA3UZJCjUNdX2UKGgGaAloD0MIvFgYIqcUUUCUhpRSlGgVTegDaBZHQIDf0CHRCyB1fZQoaAZoCWgPQwiYbaetEREXQJSGlFKUaBVL22gWR0CA4i5QxesxdX2UKGgGaAloD0MI/kY7bvj1JECUhpRSlGgVS5poFkdAgOjl1r6+FnV9lChoBmgJaA9DCGuBPSZSHktAlIaUUpRoFU3oA2gWR0CA64RW912adX2UKGgGaAloD0MI9P4/TpigI0CUhpRSlGgVS7BoFkdAgO6e3H7xeHV9lChoBmgJaA9DCDxKJTyhPVZAlIaUUpRoFU3oA2gWR0CA8edBjWkKdX2UKGgGaAloD0MIRDaQLjZxMECUhpRSlGgVTegDaBZHQIDyyP+4smR1fZQoaAZoCWgPQwj4UKIlj7pTQJSGlFKUaBVN6ANoFkdAgPRrdepn6HV9lChoBmgJaA9DCOny5nCtsERAlIaUUpRoFU3oA2gWR0CA9tZJTVDsdX2UKGgGaAloD0MIAiuHFllKYECUhpRSlGgVTegDaBZHQID6BXr+o991fZQoaAZoCWgPQwh8f4P26gMNQJSGlFKUaBVL1mgWR0CA/Hl0YCQtdX2UKGgGaAloD0MIELBW7ZpAUkCUhpRSlGgVTegDaBZHQID98VJtix51fZQoaAZoCWgPQwgKFLGIYScNQJSGlFKUaBVL/WgWR0CA/xMPBi1BdX2UKGgGaAloD0MIcw8J3/tbKUCUhpRSlGgVS8loFkdAgQHcwYcebXV9lChoBmgJaA9DCP1JfO4EszXAlIaUUpRoFU0BAWgWR0CBAdw3o9s8dX2UKGgGaAloD0MIbf30nzVXMkCUhpRSlGgVS7NoFkdAgQM0ALiMpHV9lChoBmgJaA9DCPlkxXB1UBXAlIaUUpRoFUvcaBZHQIEGzaXa8Hx1fZQoaAZoCWgPQwhNofMau4QFwJSGlFKUaBVLdWgWR0CBB70EHMUzdX2UKGgGaAloD0MI0qqWdJTLQUCUhpRSlGgVS5hoFkdAgQi1L8Jla3V9lChoBmgJaA9DCLU3+MJkqvU/lIaUUpRoFUvRaBZHQIEK8H4XXRR1fZQoaAZoCWgPQwiZt+o6VGc3wJSGlFKUaBVL/mgWR0CBDUVKPGQ0dX2UKGgGaAloD0MI9KRMamgzLUCUhpRSlGgVS91oFkdAgRyn5i3G43V9lChoBmgJaA9DCFNCsKpejkzAlIaUUpRoFU0PAWgWR0CBH91oQFs6dX2UKGgGaAloD0MIp3oy/+gzQMCUhpRSlGgVS7VoFkdAgSAV5B1LanV9lChoBmgJaA9DCDUJ3pBGhRpAlIaUUpRoFUvIaBZHQIEg7Q/oq1B1fZQoaAZoCWgPQwg+JHzvb/daQJSGlFKUaBVN6ANoFkdAgSz0gSvkinV9lChoBmgJaA9DCLh1N091qBxAlIaUUpRoFU0gAWgWR0CBLYNedCmedX2UKGgGaAloD0MIXVMgs7POUkCUhpRSlGgVTegDaBZHQIEthWHUMG51fZQoaAZoCWgPQwhQjZduEtM3QJSGlFKUaBVLt2gWR0CBN36gM+eOdX2UKGgGaAloD0MIflNYqaDiF0CUhpRSlGgVS55oFkdAgTjigkC3gHV9lChoBmgJaA9DCIIeatswREDAlIaUUpRoFUvjaBZHQIFAsV32VVx1fZQoaAZoCWgPQwgCnx9GCFtFwJSGlFKUaBVLkWgWR0CBSg5MlC1JdX2UKGgGaAloD0MIZTcz+tGkNcCUhpRSlGgVS99oFkdAgUugo5PuX3V9lChoBmgJaA9DCHwm++dpyFJAlIaUUpRoFU3oA2gWR0CBTSDvmYBvdX2UKGgGaAloD0MIMBFvnX+hRsCUhpRSlGgVS9NoFkdAgVS5QP7N0XV9lChoBmgJaA9DCN20GachwkBAlIaUUpRoFUuTaBZHQIFVSFIuoP11ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 70,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
moonlander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d84d495c34a107cf525715ebb45667c8903bc7486cc58a5f0d499c6bf303e3ff
3
+ size 87865
moonlander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef395104cb099bee2d004dd7fdb4fdb8409c45aed0b9b0a24d77578a1b53d6b5
3
+ size 43201
moonlander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
moonlander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (273 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -137.95845824944644, "std_reward": 24.139406271619073, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-05T20:32:34.801376"}