harshiv commited on
Commit
2b3c741
·
1 Parent(s): 9e3833f

Upload api.py

Browse files
Files changed (1) hide show
  1. api.py +70 -0
api.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.optim as optim
6
+ from sklearn.model_selection import train_test_split
7
+ from sklearn.metrics import accuracy_score
8
+
9
+ class PlacementModel(nn.Module):
10
+ def __init__(self, input_size, hidden_size, output_size):
11
+ super(PlacementModel, self).__init__()
12
+ self.fc1 = nn.Linear(input_size, hidden_size)
13
+ self.fc2 = nn.Linear(hidden_size, output_size)
14
+
15
+ def forward(self, x):
16
+ x = torch.relu(self.fc1(x))
17
+ x = self.fc2(x)
18
+ return x
19
+
20
+ # Load and preprocess data
21
+ df = pd.read_csv("Placement (2).csv")
22
+ df = df.drop(columns=["sl_no","stream","ssc_p","ssc_b","hsc_p","hsc_b","etest_p"])
23
+ df['internship'] = df['internship'].map({'Yes':1,'No':0})
24
+ df['status'] = df['status'].map({'Placed':1,'Not Placed':0})
25
+
26
+ X_fullstk = df.drop(['status','management','leadership','communication','sales'], axis=1)
27
+ y = df['status']
28
+
29
+ X_train_fullstk, X_test_fullstk, y_train, y_test = train_test_split(X_fullstk, y, test_size=0.20, random_state=42)
30
+
31
+ # Define model hyperparameters
32
+ input_size = X_fullstk.shape[1]
33
+ hidden_size = 128
34
+ output_size = 2
35
+ learning_rate = 0.01
36
+ epochs = 100
37
+
38
+ # Initialize model
39
+ model = PlacementModel(input_size, hidden_size, output_size)
40
+ criterion = nn.CrossEntropyLoss()
41
+ optimizer = optim.Adam(model.parameters(), lr=learning_rate)
42
+
43
+ # Train model
44
+ for epoch in range(epochs):
45
+ inputs = torch.tensor(X_train_fullstk.values, dtype=torch.float32)
46
+ labels = torch.tensor(y_train.values, dtype=torch.long)
47
+
48
+ optimizer.zero_grad()
49
+
50
+ outputs = model(inputs)
51
+ loss = criterion(outputs, labels)
52
+ loss.backward()
53
+ optimizer.step()
54
+
55
+ if epoch % 10 == 0:
56
+ print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')
57
+
58
+ # Evaluate model
59
+ with torch.no_grad():
60
+ inputs = torch.tensor(X_test_fullstk.values, dtype=torch.float32)
61
+ labels = torch.tensor(y_test.values, dtype=torch.long)
62
+
63
+ outputs = model(inputs)
64
+ _, predicted = torch.max(outputs.data, 1)
65
+ accuracy = accuracy_score(labels, predicted)
66
+
67
+ print(f'Test Accuracy: {accuracy:.4f}')
68
+
69
+ # Save model
70
+ torch.save(model.state_dict(), 'placement_model.pth')