harutoshi commited on
Commit
856b5ed
·
verified ·
1 Parent(s): 6f237cc
Files changed (1) hide show
  1. README.md +58 -2
README.md CHANGED
@@ -8,10 +8,10 @@ tags:
8
  - trl
9
  license: apache-2.0
10
  language:
11
- - en
12
  ---
13
 
14
- # Uploaded model
15
 
16
  - **Developed by:** harutoshi
17
  - **License:** apache-2.0
@@ -20,3 +20,59 @@ language:
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  - trl
9
  license: apache-2.0
10
  language:
11
+ - jp
12
  ---
13
 
14
+ # Uploaded model
15
 
16
  - **Developed by:** harutoshi
17
  - **License:** apache-2.0
 
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
23
+
24
+ # Sample Use
25
+
26
+ 以下は、推論を実行するためのサンプルコードです。
27
+
28
+ ```python
29
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
30
+ import torch
31
+ from unsloth import FastLanguageModel
32
+ from tqdm import tqdm
33
+ import json
34
+
35
+ HF_TOKEN = {あなたのHugging Faceのトークン}
36
+ model_name = "harutoshi/llm-jp-3-13b-it"
37
+
38
+ max_seq_length = 2048
39
+ dtype = None
40
+ load_in_4bit = True
41
+
42
+ model, tokenizer = FastLanguageModel.from_pretrained(
43
+ model_name = model_name,
44
+ max_seq_length = max_seq_length,
45
+ dtype = dtype,
46
+ load_in_4bit = load_in_4bit,
47
+ token = "HF token",
48
+ )
49
+ FastLanguageModel.for_inference(model)
50
+
51
+ datasets = []
52
+ with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
53
+ item = ""
54
+ for line in f:
55
+ line = line.strip()
56
+ item += line
57
+ if item.endswith("}"):
58
+ datasets.append(json.loads(item))
59
+ item = ""
60
+
61
+ results = []
62
+ for dt in tqdm(datasets):
63
+ input = dt["input"]
64
+
65
+ prompt = f"""### 指示\n{input}\n### 回答\n"""
66
+
67
+ inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
68
+
69
+ outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
70
+ prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
71
+
72
+ results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
73
+
74
+ with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
75
+ for result in results:
76
+ json.dump(result, f, ensure_ascii=False)
77
+ f.write('\n')
78
+ ```