--- license: mit base_model: haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1 tags: - generated_from_trainer datasets: - massive metrics: - accuracy - f1 model-index: - name: scenario-KD-PR-MSV-D2_data-AmazonScience_massive_all_1_155 results: [] --- # scenario-KD-PR-MSV-D2_data-AmazonScience_massive_all_1_155 This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 1.4402 - Accuracy: 0.8575 - F1: 0.8343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 55 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:| | 1.4282 | 0.27 | 5000 | 1.5913 | 0.8176 | 0.7771 | | 1.261 | 0.53 | 10000 | 1.5198 | 0.8303 | 0.7951 | | 1.2127 | 0.8 | 15000 | 1.4862 | 0.8367 | 0.8061 | | 1.0927 | 1.07 | 20000 | 1.4876 | 0.8356 | 0.8032 | | 1.0692 | 1.34 | 25000 | 1.4776 | 0.8376 | 0.8041 | | 1.0537 | 1.6 | 30000 | 1.4714 | 0.8408 | 0.8101 | | 1.0357 | 1.87 | 35000 | 1.4689 | 0.8389 | 0.8136 | | 0.9737 | 2.14 | 40000 | 1.4509 | 0.8482 | 0.8270 | | 0.9719 | 2.41 | 45000 | 1.4763 | 0.8410 | 0.8185 | | 0.9692 | 2.67 | 50000 | 1.4650 | 0.8437 | 0.8210 | | 0.978 | 2.94 | 55000 | 1.4563 | 0.8473 | 0.8266 | | 0.9229 | 3.21 | 60000 | 1.4699 | 0.8437 | 0.8193 | | 0.9323 | 3.47 | 65000 | 1.4563 | 0.8485 | 0.8247 | | 0.9274 | 3.74 | 70000 | 1.4588 | 0.8469 | 0.8205 | | 0.9177 | 4.01 | 75000 | 1.4698 | 0.8447 | 0.8227 | | 0.8939 | 4.28 | 80000 | 1.4774 | 0.8452 | 0.8227 | | 0.8926 | 4.54 | 85000 | 1.4697 | 0.8460 | 0.8185 | | 0.8973 | 4.81 | 90000 | 1.4907 | 0.8414 | 0.8182 | | 0.8696 | 5.08 | 95000 | 1.4705 | 0.8469 | 0.8217 | | 0.8784 | 5.34 | 100000 | 1.4698 | 0.8467 | 0.8211 | | 0.8803 | 5.61 | 105000 | 1.4622 | 0.8490 | 0.8240 | | 0.8849 | 5.88 | 110000 | 1.4692 | 0.8467 | 0.8198 | | 0.8614 | 6.15 | 115000 | 1.4861 | 0.8435 | 0.8138 | | 0.8613 | 6.41 | 120000 | 1.4682 | 0.8489 | 0.8278 | | 0.8704 | 6.68 | 125000 | 1.4696 | 0.8475 | 0.8284 | | 0.8687 | 6.95 | 130000 | 1.4723 | 0.8470 | 0.8252 | | 0.8469 | 7.22 | 135000 | 1.4750 | 0.8471 | 0.8252 | | 0.858 | 7.48 | 140000 | 1.4675 | 0.8485 | 0.8221 | | 0.8557 | 7.75 | 145000 | 1.4754 | 0.8462 | 0.8234 | | 0.8428 | 8.02 | 150000 | 1.4801 | 0.8469 | 0.8240 | | 0.8397 | 8.28 | 155000 | 1.4871 | 0.8462 | 0.8247 | | 0.8342 | 8.55 | 160000 | 1.4838 | 0.8471 | 0.8237 | | 0.8462 | 8.82 | 165000 | 1.4622 | 0.8474 | 0.8225 | | 0.8249 | 9.09 | 170000 | 1.4768 | 0.8483 | 0.8270 | | 0.8259 | 9.35 | 175000 | 1.4950 | 0.8443 | 0.8186 | | 0.8304 | 9.62 | 180000 | 1.4682 | 0.8510 | 0.8261 | | 0.8342 | 9.89 | 185000 | 1.4754 | 0.8480 | 0.8216 | | 0.8165 | 10.15 | 190000 | 1.4817 | 0.8473 | 0.8253 | | 0.8229 | 10.42 | 195000 | 1.4884 | 0.8463 | 0.8271 | | 0.8237 | 10.69 | 200000 | 1.4906 | 0.8448 | 0.8207 | | 0.8275 | 10.96 | 205000 | 1.4803 | 0.8470 | 0.8237 | | 0.8124 | 11.22 | 210000 | 1.4765 | 0.8491 | 0.8304 | | 0.8144 | 11.49 | 215000 | 1.5053 | 0.8446 | 0.8177 | | 0.8146 | 11.76 | 220000 | 1.4706 | 0.8495 | 0.8261 | | 0.8063 | 12.03 | 225000 | 1.4681 | 0.8526 | 0.8282 | | 0.8141 | 12.29 | 230000 | 1.4725 | 0.8493 | 0.8286 | | 0.8098 | 12.56 | 235000 | 1.4612 | 0.8511 | 0.8257 | | 0.8159 | 12.83 | 240000 | 1.4833 | 0.8477 | 0.8226 | | 0.805 | 13.09 | 245000 | 1.4828 | 0.8480 | 0.8235 | | 0.8082 | 13.36 | 250000 | 1.4919 | 0.8456 | 0.8185 | | 0.8146 | 13.63 | 255000 | 1.4872 | 0.8456 | 0.8217 | | 0.8077 | 13.9 | 260000 | 1.4754 | 0.8492 | 0.8209 | | 0.8027 | 14.16 | 265000 | 1.4714 | 0.8507 | 0.8257 | | 0.807 | 14.43 | 270000 | 1.4948 | 0.8441 | 0.8234 | | 0.8015 | 14.7 | 275000 | 1.4791 | 0.8497 | 0.8256 | | 0.8018 | 14.96 | 280000 | 1.4805 | 0.8487 | 0.8290 | | 0.8005 | 15.23 | 285000 | 1.4642 | 0.8523 | 0.8312 | | 0.799 | 15.5 | 290000 | 1.4692 | 0.8522 | 0.8328 | | 0.7994 | 15.77 | 295000 | 1.4783 | 0.8494 | 0.8285 | | 0.7942 | 16.03 | 300000 | 1.4749 | 0.8507 | 0.8299 | | 0.7924 | 16.3 | 305000 | 1.4702 | 0.8527 | 0.8301 | | 0.7978 | 16.57 | 310000 | 1.4882 | 0.8482 | 0.8228 | | 0.7953 | 16.84 | 315000 | 1.4707 | 0.8514 | 0.8269 | | 0.7867 | 17.1 | 320000 | 1.4929 | 0.8482 | 0.8274 | | 0.7888 | 17.37 | 325000 | 1.4731 | 0.8509 | 0.8272 | | 0.7938 | 17.64 | 330000 | 1.4739 | 0.8511 | 0.8300 | | 0.7903 | 17.9 | 335000 | 1.4537 | 0.8539 | 0.8306 | | 0.7876 | 18.17 | 340000 | 1.4700 | 0.8516 | 0.8302 | | 0.7902 | 18.44 | 345000 | 1.4813 | 0.8490 | 0.8238 | | 0.7894 | 18.71 | 350000 | 1.4617 | 0.8542 | 0.8291 | | 0.7872 | 18.97 | 355000 | 1.4713 | 0.8508 | 0.8272 | | 0.7866 | 19.24 | 360000 | 1.4712 | 0.8510 | 0.8313 | | 0.7828 | 19.51 | 365000 | 1.4642 | 0.8526 | 0.8305 | | 0.7873 | 19.77 | 370000 | 1.4590 | 0.8533 | 0.8298 | | 0.7781 | 20.04 | 375000 | 1.4681 | 0.8532 | 0.8287 | | 0.7783 | 20.31 | 380000 | 1.4707 | 0.8524 | 0.8305 | | 0.7851 | 20.58 | 385000 | 1.4626 | 0.8538 | 0.8300 | | 0.7845 | 20.84 | 390000 | 1.4547 | 0.8543 | 0.8295 | | 0.783 | 21.11 | 395000 | 1.4627 | 0.8537 | 0.8309 | | 0.7783 | 21.38 | 400000 | 1.4627 | 0.8542 | 0.8324 | | 0.7842 | 21.65 | 405000 | 1.4707 | 0.8510 | 0.8261 | | 0.7816 | 21.91 | 410000 | 1.4629 | 0.8533 | 0.8298 | | 0.7779 | 22.18 | 415000 | 1.4567 | 0.8536 | 0.8262 | | 0.7816 | 22.45 | 420000 | 1.4574 | 0.8549 | 0.8326 | | 0.7762 | 22.71 | 425000 | 1.4661 | 0.8533 | 0.8311 | | 0.7808 | 22.98 | 430000 | 1.4623 | 0.8541 | 0.8306 | | 0.7761 | 23.25 | 435000 | 1.4596 | 0.8542 | 0.8297 | | 0.7745 | 23.52 | 440000 | 1.4608 | 0.8539 | 0.8296 | | 0.7801 | 23.78 | 445000 | 1.4517 | 0.8555 | 0.8305 | | 0.7705 | 24.05 | 450000 | 1.4598 | 0.8552 | 0.8327 | | 0.7761 | 24.32 | 455000 | 1.4540 | 0.8547 | 0.8296 | | 0.7771 | 24.58 | 460000 | 1.4568 | 0.8543 | 0.8308 | | 0.7805 | 24.85 | 465000 | 1.4582 | 0.8540 | 0.8306 | | 0.7707 | 25.12 | 470000 | 1.4573 | 0.8548 | 0.8311 | | 0.7752 | 25.39 | 475000 | 1.4529 | 0.8551 | 0.8329 | | 0.7771 | 25.65 | 480000 | 1.4570 | 0.8542 | 0.8317 | | 0.7757 | 25.92 | 485000 | 1.4532 | 0.8556 | 0.8333 | | 0.7717 | 26.19 | 490000 | 1.4548 | 0.8546 | 0.8303 | | 0.7748 | 26.46 | 495000 | 1.4474 | 0.8565 | 0.8335 | | 0.7741 | 26.72 | 500000 | 1.4517 | 0.8548 | 0.8311 | | 0.7738 | 26.99 | 505000 | 1.4505 | 0.8555 | 0.8330 | | 0.7722 | 27.26 | 510000 | 1.4503 | 0.8549 | 0.8307 | | 0.7709 | 27.52 | 515000 | 1.4515 | 0.8550 | 0.8317 | | 0.773 | 27.79 | 520000 | 1.4455 | 0.8560 | 0.8338 | | 0.7726 | 28.06 | 525000 | 1.4477 | 0.8560 | 0.8333 | | 0.7699 | 28.33 | 530000 | 1.4427 | 0.8564 | 0.8327 | | 0.7718 | 28.59 | 535000 | 1.4491 | 0.8556 | 0.8312 | | 0.7713 | 28.86 | 540000 | 1.4397 | 0.8575 | 0.8352 | | 0.7681 | 29.13 | 545000 | 1.4452 | 0.8574 | 0.8350 | | 0.7693 | 29.39 | 550000 | 1.4472 | 0.8559 | 0.8329 | | 0.77 | 29.66 | 555000 | 1.4437 | 0.8566 | 0.8336 | | 0.7689 | 29.93 | 560000 | 1.4402 | 0.8575 | 0.8343 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3