File size: 5,381 Bytes
fe35482 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
license: mit
base_model: haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1
tags:
- generated_from_trainer
datasets:
- massive
metrics:
- accuracy
- f1
model-index:
- name: scenario-KD-SCR-MSV-CL-D2_data-cl-massive_all_1_166
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-KD-SCR-MSV-CL-D2_data-cl-massive_all_1_166
This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1) on the massive dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Accuracy: 0.0315
- F1: 0.0010
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|
| 0.0 | 0.56 | 5000 | nan | 0.0315 | 0.0010 |
| 0.0 | 1.11 | 10000 | nan | 0.0315 | 0.0010 |
| 0.0 | 1.67 | 15000 | nan | 0.0315 | 0.0010 |
| 0.0 | 2.22 | 20000 | nan | 0.0315 | 0.0010 |
| 0.0 | 2.78 | 25000 | nan | 0.0315 | 0.0010 |
| 0.0 | 3.33 | 30000 | nan | 0.0315 | 0.0010 |
| 0.0 | 3.89 | 35000 | nan | 0.0315 | 0.0010 |
| 0.0 | 4.45 | 40000 | nan | 0.0315 | 0.0010 |
| 0.0 | 5.0 | 45000 | nan | 0.0315 | 0.0010 |
| 0.0 | 5.56 | 50000 | nan | 0.0315 | 0.0010 |
| 0.0 | 6.11 | 55000 | nan | 0.0315 | 0.0010 |
| 0.0 | 6.67 | 60000 | nan | 0.0315 | 0.0010 |
| 0.0 | 7.23 | 65000 | nan | 0.0315 | 0.0010 |
| 0.0 | 7.78 | 70000 | nan | 0.0315 | 0.0010 |
| 0.0 | 8.34 | 75000 | nan | 0.0315 | 0.0010 |
| 0.0 | 8.89 | 80000 | nan | 0.0315 | 0.0010 |
| 0.0 | 9.45 | 85000 | nan | 0.0315 | 0.0010 |
| 0.0 | 10.0 | 90000 | nan | 0.0315 | 0.0010 |
| 0.0 | 10.56 | 95000 | nan | 0.0315 | 0.0010 |
| 0.0 | 11.12 | 100000 | nan | 0.0315 | 0.0010 |
| 0.0 | 11.67 | 105000 | nan | 0.0315 | 0.0010 |
| 0.0 | 12.23 | 110000 | nan | 0.0315 | 0.0010 |
| 0.0 | 12.78 | 115000 | nan | 0.0315 | 0.0010 |
| 0.0 | 13.34 | 120000 | nan | 0.0315 | 0.0010 |
| 0.0 | 13.9 | 125000 | nan | 0.0315 | 0.0010 |
| 0.0 | 14.45 | 130000 | nan | 0.0315 | 0.0010 |
| 0.0 | 15.01 | 135000 | nan | 0.0315 | 0.0010 |
| 0.0 | 15.56 | 140000 | nan | 0.0315 | 0.0010 |
| 0.0 | 16.12 | 145000 | nan | 0.0315 | 0.0010 |
| 0.0 | 16.67 | 150000 | nan | 0.0315 | 0.0010 |
| 0.0 | 17.23 | 155000 | nan | 0.0315 | 0.0010 |
| 0.0 | 17.79 | 160000 | nan | 0.0315 | 0.0010 |
| 0.0 | 18.34 | 165000 | nan | 0.0315 | 0.0010 |
| 0.0 | 18.9 | 170000 | nan | 0.0315 | 0.0010 |
| 0.0 | 19.45 | 175000 | nan | 0.0315 | 0.0010 |
| 0.0 | 20.01 | 180000 | nan | 0.0315 | 0.0010 |
| 0.0 | 20.56 | 185000 | nan | 0.0315 | 0.0010 |
| 0.0 | 21.12 | 190000 | nan | 0.0315 | 0.0010 |
| 0.0 | 21.68 | 195000 | nan | 0.0315 | 0.0010 |
| 0.0 | 22.23 | 200000 | nan | 0.0315 | 0.0010 |
| 0.0 | 22.79 | 205000 | nan | 0.0315 | 0.0010 |
| 0.0 | 23.34 | 210000 | nan | 0.0315 | 0.0010 |
| 0.0 | 23.9 | 215000 | nan | 0.0315 | 0.0010 |
| 0.0 | 24.46 | 220000 | nan | 0.0315 | 0.0010 |
| 0.0 | 25.01 | 225000 | nan | 0.0315 | 0.0010 |
| 0.0 | 25.57 | 230000 | nan | 0.0315 | 0.0010 |
| 0.0 | 26.12 | 235000 | nan | 0.0315 | 0.0010 |
| 0.0 | 26.68 | 240000 | nan | 0.0315 | 0.0010 |
| 0.0 | 27.23 | 245000 | nan | 0.0315 | 0.0010 |
| 0.0 | 27.79 | 250000 | nan | 0.0315 | 0.0010 |
| 0.0 | 28.35 | 255000 | nan | 0.0315 | 0.0010 |
| 0.0 | 28.9 | 260000 | nan | 0.0315 | 0.0010 |
| 0.0 | 29.46 | 265000 | nan | 0.0315 | 0.0010 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
|