Initial Commit
Browse files- README.md +64 -65
- config.json +1 -1
- eval_results_cardiff.json +1 -1
- pytorch_model.bin +2 -2
- training_args.bin +2 -2
README.md
CHANGED
@@ -1,20 +1,19 @@
|
|
1 |
---
|
|
|
2 |
base_model: microsoft/mdeberta-v3-base
|
|
|
|
|
3 |
datasets:
|
4 |
- tweet_sentiment_multilingual
|
5 |
-
library_name: transformers
|
6 |
-
license: mit
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
- f1
|
10 |
-
tags:
|
11 |
-
- generated_from_trainer
|
12 |
model-index:
|
13 |
- name: scenario-NON-KD-SCR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual
|
14 |
results:
|
15 |
- task:
|
16 |
-
type: text-classification
|
17 |
name: Text Classification
|
|
|
18 |
dataset:
|
19 |
name: tweet_sentiment_multilingual
|
20 |
type: tweet_sentiment_multilingual
|
@@ -22,12 +21,12 @@ model-index:
|
|
22 |
split: validation
|
23 |
args: all
|
24 |
metrics:
|
25 |
-
-
|
26 |
-
|
27 |
-
|
28 |
-
-
|
29 |
-
|
30 |
-
|
31 |
---
|
32 |
|
33 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -37,9 +36,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
37 |
|
38 |
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tweet_sentiment_multilingual dataset.
|
39 |
It achieves the following results on the evaluation set:
|
40 |
-
- Loss: 6.
|
41 |
-
- Accuracy: 0.
|
42 |
-
- F1: 0.
|
43 |
|
44 |
## Model description
|
45 |
|
@@ -61,66 +60,66 @@ The following hyperparameters were used during training:
|
|
61 |
- learning_rate: 5e-05
|
62 |
- train_batch_size: 32
|
63 |
- eval_batch_size: 32
|
64 |
-
- seed:
|
65 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
- lr_scheduler_type: linear
|
67 |
- num_epochs: 50
|
68 |
|
69 |
### Training results
|
70 |
|
71 |
-
| Training Loss | Epoch
|
72 |
-
|
73 |
-
| 1.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.0033 | 30.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
|
120 |
|
121 |
### Framework versions
|
122 |
|
123 |
-
- Transformers 4.
|
124 |
- Pytorch 2.1.1+cu121
|
125 |
- Datasets 2.14.5
|
126 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
base_model: microsoft/mdeberta-v3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
datasets:
|
7 |
- tweet_sentiment_multilingual
|
|
|
|
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
- f1
|
|
|
|
|
11 |
model-index:
|
12 |
- name: scenario-NON-KD-SCR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual
|
13 |
results:
|
14 |
- task:
|
|
|
15 |
name: Text Classification
|
16 |
+
type: text-classification
|
17 |
dataset:
|
18 |
name: tweet_sentiment_multilingual
|
19 |
type: tweet_sentiment_multilingual
|
|
|
21 |
split: validation
|
22 |
args: all
|
23 |
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.4957561728395062
|
27 |
+
- name: F1
|
28 |
+
type: f1
|
29 |
+
value: 0.4963309489168229
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
36 |
|
37 |
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tweet_sentiment_multilingual dataset.
|
38 |
It achieves the following results on the evaluation set:
|
39 |
+
- Loss: 6.7830
|
40 |
+
- Accuracy: 0.4958
|
41 |
+
- F1: 0.4963
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
60 |
- learning_rate: 5e-05
|
61 |
- train_batch_size: 32
|
62 |
- eval_batch_size: 32
|
63 |
+
- seed: 66
|
64 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
- lr_scheduler_type: linear
|
66 |
- num_epochs: 50
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
71 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
|
72 |
+
| 1.0563 | 1.09 | 500 | 1.0531 | 0.4950 | 0.4889 |
|
73 |
+
| 0.7646 | 2.17 | 1000 | 1.2908 | 0.5131 | 0.5122 |
|
74 |
+
| 0.4473 | 3.26 | 1500 | 1.6933 | 0.5158 | 0.5165 |
|
75 |
+
| 0.2465 | 4.35 | 2000 | 2.2069 | 0.5135 | 0.5126 |
|
76 |
+
| 0.1511 | 5.43 | 2500 | 2.5482 | 0.5081 | 0.5082 |
|
77 |
+
| 0.121 | 6.52 | 3000 | 2.8075 | 0.5123 | 0.5107 |
|
78 |
+
| 0.0834 | 7.61 | 3500 | 3.1416 | 0.5085 | 0.5082 |
|
79 |
+
| 0.061 | 8.7 | 4000 | 2.8363 | 0.5093 | 0.5083 |
|
80 |
+
| 0.0496 | 9.78 | 4500 | 3.3908 | 0.5174 | 0.5162 |
|
81 |
+
| 0.0394 | 10.87 | 5000 | 3.6362 | 0.5123 | 0.5126 |
|
82 |
+
| 0.0305 | 11.96 | 5500 | 4.0351 | 0.5035 | 0.5047 |
|
83 |
+
| 0.0283 | 13.04 | 6000 | 4.0528 | 0.5031 | 0.5042 |
|
84 |
+
| 0.0184 | 14.13 | 6500 | 4.2723 | 0.5039 | 0.5045 |
|
85 |
+
| 0.0217 | 15.22 | 7000 | 4.2612 | 0.4981 | 0.4977 |
|
86 |
+
| 0.0193 | 16.3 | 7500 | 4.3257 | 0.4907 | 0.4915 |
|
87 |
+
| 0.0196 | 17.39 | 8000 | 4.6089 | 0.4904 | 0.4906 |
|
88 |
+
| 0.0154 | 18.48 | 8500 | 4.6472 | 0.4927 | 0.4935 |
|
89 |
+
| 0.014 | 19.57 | 9000 | 4.4510 | 0.4981 | 0.4982 |
|
90 |
+
| 0.0177 | 20.65 | 9500 | 4.2732 | 0.4907 | 0.4911 |
|
91 |
+
| 0.0114 | 21.74 | 10000 | 4.5261 | 0.4931 | 0.4921 |
|
92 |
+
| 0.0099 | 22.83 | 10500 | 4.9751 | 0.4888 | 0.4901 |
|
93 |
+
| 0.0073 | 23.91 | 11000 | 4.4316 | 0.4927 | 0.4923 |
|
94 |
+
| 0.0081 | 25.0 | 11500 | 4.8393 | 0.4942 | 0.4940 |
|
95 |
+
| 0.0039 | 26.09 | 12000 | 5.2291 | 0.4988 | 0.4958 |
|
96 |
+
| 0.0052 | 27.17 | 12500 | 5.1648 | 0.4931 | 0.4942 |
|
97 |
+
| 0.0065 | 28.26 | 13000 | 5.1350 | 0.4919 | 0.4924 |
|
98 |
+
| 0.0042 | 29.35 | 13500 | 5.2707 | 0.4988 | 0.4971 |
|
99 |
+
| 0.0033 | 30.43 | 14000 | 5.2902 | 0.4896 | 0.4911 |
|
100 |
+
| 0.0041 | 31.52 | 14500 | 5.3182 | 0.4958 | 0.4971 |
|
101 |
+
| 0.002 | 32.61 | 15000 | 5.4473 | 0.4961 | 0.4968 |
|
102 |
+
| 0.001 | 33.7 | 15500 | 5.7540 | 0.4942 | 0.4952 |
|
103 |
+
| 0.0016 | 34.78 | 16000 | 5.8709 | 0.4958 | 0.4929 |
|
104 |
+
| 0.001 | 35.87 | 16500 | 6.1489 | 0.4938 | 0.4936 |
|
105 |
+
| 0.0012 | 36.96 | 17000 | 6.4545 | 0.4942 | 0.4942 |
|
106 |
+
| 0.0011 | 38.04 | 17500 | 6.4864 | 0.4946 | 0.4936 |
|
107 |
+
| 0.0024 | 39.13 | 18000 | 6.2903 | 0.5012 | 0.4998 |
|
108 |
+
| 0.001 | 40.22 | 18500 | 6.2566 | 0.4954 | 0.4950 |
|
109 |
+
| 0.0002 | 41.3 | 19000 | 6.3660 | 0.4954 | 0.4955 |
|
110 |
+
| 0.001 | 42.39 | 19500 | 6.4778 | 0.4954 | 0.4923 |
|
111 |
+
| 0.0001 | 43.48 | 20000 | 6.5401 | 0.4985 | 0.4981 |
|
112 |
+
| 0.0002 | 44.57 | 20500 | 6.6695 | 0.5 | 0.4992 |
|
113 |
+
| 0.0 | 45.65 | 21000 | 6.7149 | 0.5012 | 0.5004 |
|
114 |
+
| 0.0001 | 46.74 | 21500 | 6.7514 | 0.5015 | 0.5011 |
|
115 |
+
| 0.0008 | 47.83 | 22000 | 6.7485 | 0.4958 | 0.4964 |
|
116 |
+
| 0.0001 | 48.91 | 22500 | 6.7745 | 0.4961 | 0.4968 |
|
117 |
+
| 0.0001 | 50.0 | 23000 | 6.7830 | 0.4958 | 0.4963 |
|
118 |
|
119 |
|
120 |
### Framework versions
|
121 |
|
122 |
+
- Transformers 4.33.3
|
123 |
- Pytorch 2.1.1+cu121
|
124 |
- Datasets 2.14.5
|
125 |
+
- Tokenizers 0.13.3
|
config.json
CHANGED
@@ -39,7 +39,7 @@
|
|
39 |
"relative_attention": true,
|
40 |
"share_att_key": true,
|
41 |
"torch_dtype": "float32",
|
42 |
-
"transformers_version": "4.
|
43 |
"type_vocab_size": 0,
|
44 |
"vocab_size": 251000
|
45 |
}
|
|
|
39 |
"relative_attention": true,
|
40 |
"share_att_key": true,
|
41 |
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.33.3",
|
43 |
"type_vocab_size": 0,
|
44 |
"vocab_size": 251000
|
45 |
}
|
eval_results_cardiff.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"arabic": {"f1": 0.
|
|
|
1 |
+
{"arabic": {"f1": 0.47089949037256823, "accuracy": 0.4689655172413793, "confusion_matrix": [[133, 120, 37], [97, 153, 40], [71, 97, 122]]}, "english": {"f1": 0.46593250950336423, "accuracy": 0.46781609195402296, "confusion_matrix": [[153, 84, 53], [110, 105, 75], [82, 59, 149]]}, "french": {"f1": 0.534964240110648, "accuracy": 0.535632183908046, "confusion_matrix": [[164, 71, 55], [42, 170, 78], [67, 91, 132]]}, "german": {"f1": 0.5509262447152427, "accuracy": 0.5517241379310345, "confusion_matrix": [[143, 79, 68], [60, 173, 57], [57, 69, 164]]}, "hindi": {"f1": 0.44474479625697233, "accuracy": 0.44482758620689655, "confusion_matrix": [[135, 79, 76], [77, 127, 86], [84, 81, 125]]}, "italian": {"f1": 0.4734988640051931, "accuracy": 0.49195402298850577, "confusion_matrix": [[72, 131, 87], [11, 194, 85], [32, 96, 162]]}, "portuguese": {"f1": 0.5575518820795515, "accuracy": 0.5597701149425287, "confusion_matrix": [[170, 71, 49], [82, 131, 77], [45, 59, 186]]}, "spanish": {"f1": 0.5131583962747177, "accuracy": 0.5126436781609195, "confusion_matrix": [[147, 92, 51], [81, 138, 71], [57, 72, 161]]}, "all": {"f1": 0.5044375419579221, "accuracy": 0.5041666666666667, "confusion_matrix": [[1117, 727, 476], [560, 1191, 569], [495, 624, 1201]]}}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9680fd0665f2031db41c7f1d19be5b8fdc1bbd78377279b01f46491da5375543
|
3 |
+
size 945174322
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:534b6d504b1d4129997135ebf6daae33d3a21de1f665c5be67a95eff367d11ec
|
3 |
+
size 4664
|