--- license: mit base_model: facebook/xlm-v-base tags: - generated_from_trainer datasets: - massive metrics: - accuracy - f1 model-index: - name: scenario-TCR-XLMV_data-AmazonScience_massive_all_1_1_beta results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: all_1.1 split: validation args: all_1.1 metrics: - name: Accuracy type: accuracy value: 0.051647811116576486 - name: F1 type: f1 value: 0.0016647904742274576 --- # scenario-TCR-XLMV_data-AmazonScience_massive_all_1_1_beta This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 3.8507 - Accuracy: 0.0516 - F1: 0.0017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 112233 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 3.7597 | 0.27 | 5000 | 3.7356 | 0.0644 | 0.0021 | | 3.74 | 0.53 | 10000 | 3.7433 | 0.0620 | 0.0020 | | 3.7286 | 0.8 | 15000 | 3.7729 | 0.0620 | 0.0020 | | 3.7156 | 1.07 | 20000 | 3.8497 | 0.0516 | 0.0017 | | 3.7167 | 1.34 | 25000 | 3.8316 | 0.0516 | 0.0017 | | 3.7147 | 1.6 | 30000 | 3.8507 | 0.0516 | 0.0017 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3