File size: 3,310 Bytes
bdc1011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: mit
base_model: facebook/xlm-v-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: scenario-TCR-XLMV_data-cl-cardiff_cl_only_delta
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-TCR-XLMV_data-cl-cardiff_cl_only_delta

This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0448
- Accuracy: 0.4838
- F1: 0.4798

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 11213
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log        | 1.09  | 250  | 1.0988          | 0.3333   | 0.1667 |
| 1.0959        | 2.17  | 500  | 1.0989          | 0.3333   | 0.1667 |
| 1.0959        | 3.26  | 750  | 1.1000          | 0.3333   | 0.1667 |
| 1.0996        | 4.35  | 1000 | 1.1023          | 0.3333   | 0.1667 |
| 1.0996        | 5.43  | 1250 | 1.0990          | 0.3333   | 0.1667 |
| 1.1001        | 6.52  | 1500 | 1.0997          | 0.3333   | 0.1667 |
| 1.1001        | 7.61  | 1750 | 1.0998          | 0.3333   | 0.1667 |
| 1.0992        | 8.7   | 2000 | 1.0988          | 0.3333   | 0.1667 |
| 1.0992        | 9.78  | 2250 | 1.0990          | 0.3333   | 0.1667 |
| 1.0998        | 10.87 | 2500 | 1.0992          | 0.3333   | 0.1667 |
| 1.0998        | 11.96 | 2750 | 1.0996          | 0.3333   | 0.1667 |
| 1.0994        | 13.04 | 3000 | 1.0987          | 0.3333   | 0.1667 |
| 1.0994        | 14.13 | 3250 | 1.0988          | 0.3333   | 0.1667 |
| 1.0993        | 15.22 | 3500 | 1.0993          | 0.3333   | 0.1667 |
| 1.0993        | 16.3  | 3750 | 1.0987          | 0.3333   | 0.1667 |
| 1.0995        | 17.39 | 4000 | 1.0986          | 0.3333   | 0.1667 |
| 1.0995        | 18.48 | 4250 | 1.0989          | 0.3333   | 0.1667 |
| 1.0991        | 19.57 | 4500 | 1.0989          | 0.3333   | 0.1667 |
| 1.0991        | 20.65 | 4750 | 1.0987          | 0.3333   | 0.1667 |
| 1.0994        | 21.74 | 5000 | 1.0987          | 0.3333   | 0.1667 |
| 1.0994        | 22.83 | 5250 | 1.0987          | 0.3333   | 0.1667 |
| 1.0991        | 23.91 | 5500 | 1.0987          | 0.3333   | 0.1667 |
| 1.0991        | 25.0  | 5750 | 1.0986          | 0.3333   | 0.1667 |
| 1.0991        | 26.09 | 6000 | 1.0987          | 0.3333   | 0.1667 |
| 1.0991        | 27.17 | 6250 | 1.0986          | 0.3333   | 0.1667 |
| 1.0946        | 28.26 | 6500 | 1.0796          | 0.4560   | 0.4220 |
| 1.0946        | 29.35 | 6750 | 1.0448          | 0.4838   | 0.4798 |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3