hasanmustafa0503 commited on
Commit
9f3ef91
·
verified ·
1 Parent(s): 6ce2c4d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -31
README.md CHANGED
@@ -5,42 +5,22 @@ language:
5
  pipeline_tag: text-classification
6
  tags:
7
  - sentiment-analysis
 
 
8
  ---
9
 
10
- ---
11
- language: en
12
- license: apache-2.0
13
- pipeline_tag: text-classification
14
- tags:
15
- - sentiment-analysis
16
- - mental-health
17
- - transformers
18
- - huggingface
19
- - ai-chatbot
20
- ---
21
 
22
- # 🧠 MindGuardAI Sentiment Analysis Model
23
-
24
- This model is part of the **MindGuardAI** project, a mental health–focused chatbot system. It performs **sentiment analysis** on user input text to classify emotional tone as **positive** or **negative**, helping assess user mood and emotional state in real time.
25
-
26
- ## ✨ Model Highlights
27
-
28
- - **Task**: Sentiment classification (binary: `Positive`, `Negative`)
29
- - **Trained On**: Social media mental health datasets (Twitter, Reddit-style samples)
30
- - **Model Type**: Fine-tuned BERT-based model using the Hugging Face `transformers` library
31
- - **Use Case**: Integrates with mental health chatbot systems for mood tracking and emotional awareness
32
-
33
- ---
34
 
35
- ## 🚀 Quick Start
36
 
37
- ### 🧪 Inference API
38
 
39
- Try it out instantly using Hugging Face's hosted API 👇
40
 
41
- ```python
42
- from transformers import pipeline
43
 
44
- pipe = pipeline("text-classification", model="hasanmustafa0503/MindGuardAI")
45
- result = pipe("I feel really low and unmotivated today.")
46
- print(result)
 
5
  pipeline_tag: text-classification
6
  tags:
7
  - sentiment-analysis
8
+ - transformers
9
+ - huggingface
10
  ---
11
 
12
+ # 🧠 Sentiment Analysis Model
 
 
 
 
 
 
 
 
 
 
13
 
14
+ This model performs binary sentiment classification (Positive/Negative) on user-provided text inputs. It is trained to assist in mental health-related sentiment detection.
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ ## 🚀 Usage
17
 
18
+ You can try this model via the Hugging Face Inference API or integrate it in your application using the `transformers` library.
19
 
20
+ ## 🧪 Example
21
 
22
+ **Input:**
23
+ "I feel really hopeful today!"
24
 
25
+ **Output:**
26
+ `Positive`