File size: 31,859 Bytes
093713b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "collapsed_sections": [
        "-tNVQkHnZfrs"
      ]
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "gpuClass": "standard"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "## Setup"
      ],
      "metadata": {
        "id": "-tNVQkHnZfrs"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "%cd /content/\n",
        "%rm -rf semantic-segmentation\n",
        "!git clone https://github.com/hb0313/semantic-segmentation\n",
        "%cd semantic-segmentation\n",
        "%pip install -e .\n",
        "%pip install -U gdown"
      ],
      "metadata": {
        "id": "pzBeWQDQZdic",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "30620197-c859-44ec-d7aa-eeccd032cdcc"
      },
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "/content\n",
            "Cloning into 'semantic-segmentation'...\n",
            "remote: Enumerating objects: 792, done.\u001b[K\n",
            "remote: Counting objects: 100% (39/39), done.\u001b[K\n",
            "remote: Compressing objects: 100% (28/28), done.\u001b[K\n",
            "remote: Total 792 (delta 11), reused 31 (delta 11), pack-reused 753\u001b[K\n",
            "Receiving objects: 100% (792/792), 55.00 MiB | 19.25 MiB/s, done.\n",
            "Resolving deltas: 100% (462/462), done.\n",
            "/content/semantic-segmentation\n",
            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
            "Obtaining file:///content/semantic-segmentation\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from semseg==0.4.1) (4.64.1)\n",
            "Requirement already satisfied: tabulate in /usr/local/lib/python3.7/dist-packages (from semseg==0.4.1) (0.8.10)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from semseg==0.4.1) (1.21.6)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from semseg==0.4.1) (1.7.3)\n",
            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from semseg==0.4.1) (3.2.2)\n",
            "Requirement already satisfied: tensorboard in /usr/local/lib/python3.7/dist-packages (from semseg==0.4.1) (2.8.0)\n",
            "Requirement already satisfied: fvcore in /usr/local/lib/python3.7/dist-packages (from semseg==0.4.1) (0.1.5.post20220512)\n",
            "Requirement already satisfied: einops in /usr/local/lib/python3.7/dist-packages (from semseg==0.4.1) (0.4.1)\n",
            "Requirement already satisfied: rich in /usr/local/lib/python3.7/dist-packages (from semseg==0.4.1) (12.5.1)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.7/dist-packages (from fvcore->semseg==0.4.1) (6.0)\n",
            "Requirement already satisfied: iopath>=0.1.7 in /usr/local/lib/python3.7/dist-packages (from fvcore->semseg==0.4.1) (0.1.10)\n",
            "Requirement already satisfied: Pillow in /usr/local/lib/python3.7/dist-packages (from fvcore->semseg==0.4.1) (7.1.2)\n",
            "Requirement already satisfied: termcolor>=1.1 in /usr/local/lib/python3.7/dist-packages (from fvcore->semseg==0.4.1) (1.1.0)\n",
            "Requirement already satisfied: yacs>=0.1.6 in /usr/local/lib/python3.7/dist-packages (from fvcore->semseg==0.4.1) (0.1.8)\n",
            "Requirement already satisfied: portalocker in /usr/local/lib/python3.7/dist-packages (from iopath>=0.1.7->fvcore->semseg==0.4.1) (2.5.1)\n",
            "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from iopath>=0.1.7->fvcore->semseg==0.4.1) (4.1.1)\n",
            "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->semseg==0.4.1) (3.0.9)\n",
            "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->semseg==0.4.1) (2.8.2)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->semseg==0.4.1) (0.11.0)\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->semseg==0.4.1) (1.4.4)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.1->matplotlib->semseg==0.4.1) (1.15.0)\n",
            "Requirement already satisfied: commonmark<0.10.0,>=0.9.0 in /usr/local/lib/python3.7/dist-packages (from rich->semseg==0.4.1) (0.9.1)\n",
            "Requirement already satisfied: pygments<3.0.0,>=2.6.0 in /usr/local/lib/python3.7/dist-packages (from rich->semseg==0.4.1) (2.6.1)\n",
            "Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard->semseg==0.4.1) (1.2.0)\n",
            "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard->semseg==0.4.1) (3.4.1)\n",
            "Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.7/dist-packages (from tensorboard->semseg==0.4.1) (0.37.1)\n",
            "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard->semseg==0.4.1) (1.0.1)\n",
            "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->semseg==0.4.1) (1.8.1)\n",
            "Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard->semseg==0.4.1) (1.35.0)\n",
            "Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->semseg==0.4.1) (3.17.3)\n",
            "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard->semseg==0.4.1) (0.4.6)\n",
            "Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard->semseg==0.4.1) (1.48.1)\n",
            "Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->semseg==0.4.1) (2.23.0)\n",
            "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->semseg==0.4.1) (57.4.0)\n",
            "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->semseg==0.4.1) (0.6.1)\n",
            "Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->semseg==0.4.1) (4.9)\n",
            "Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->semseg==0.4.1) (4.2.4)\n",
            "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->semseg==0.4.1) (0.2.8)\n",
            "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->semseg==0.4.1) (1.3.1)\n",
            "Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard->semseg==0.4.1) (4.12.0)\n",
            "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard->semseg==0.4.1) (3.8.1)\n",
            "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->semseg==0.4.1) (0.4.8)\n",
            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->semseg==0.4.1) (2.10)\n",
            "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->semseg==0.4.1) (1.24.3)\n",
            "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->semseg==0.4.1) (3.0.4)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->semseg==0.4.1) (2022.6.15)\n",
            "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard->semseg==0.4.1) (3.2.0)\n",
            "Installing collected packages: semseg\n",
            "  Running setup.py develop for semseg\n",
            "Successfully installed semseg-0.4.1\n",
            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
            "Requirement already satisfied: gdown in /usr/local/lib/python3.7/dist-packages (4.5.1)\n",
            "Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from gdown) (1.15.0)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from gdown) (4.64.1)\n",
            "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.7/dist-packages (from gdown) (4.6.3)\n",
            "Requirement already satisfied: requests[socks] in /usr/local/lib/python3.7/dist-packages (from gdown) (2.23.0)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from gdown) (3.8.0)\n",
            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests[socks]->gdown) (2.10)\n",
            "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests[socks]->gdown) (1.24.3)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests[socks]->gdown) (2022.6.15)\n",
            "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests[socks]->gdown) (3.0.4)\n",
            "Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in /usr/local/lib/python3.7/dist-packages (from requests[socks]->gdown) (1.7.1)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Defination for loading model and checkpoints"
      ],
      "metadata": {
        "id": "L-WE4q6_ZHdQ"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import gdown\n",
        "from pathlib import Path\n",
        "import torch\n",
        "from torchvision import io\n",
        "from torchvision import transforms as T\n",
        "from PIL import Image\n",
        "from semseg.models import *\n",
        "from google.colab import files\n",
        "# from IPython.display import Image\n",
        "\n",
        "\n",
        "def get_checkpoints():\n",
        "  ckpt = Path('./checkpoints/pretrained/segformer')\n",
        "  ckpt.mkdir(exist_ok=True, parents=True)\n",
        "\n",
        "  url = 'https://huggingface.co/hashb/semantic-segmentation-segformer/resolve/main/segformer.b3.ade.pth'\n",
        "  output = './checkpoints/pretrained/segformer/segformer.b3.ade.pth'\n",
        "  gdown.download(url, output, quiet=False)\n",
        "\n",
        "def show_image(image):\n",
        "  if image.shape[2] != 3: image = image.permute(1, 2, 0)\n",
        "  image = Image.fromarray(image.numpy())\n",
        "  # image.save(\"result.png\")\n",
        "  return image\n",
        "\n",
        "def load_model():\n",
        "  model = eval('SegFormer')(\n",
        "      backbone='MiT-B3',\n",
        "      num_classes=150\n",
        "  )\n",
        "\n",
        "  try:\n",
        "      model.load_state_dict(torch.load('checkpoints/pretrained/segformer/segformer.b3.ade.pth', map_location='cpu'))\n",
        "  except:\n",
        "    print(\"Download a pretrained model's weights from the result table.\")\n",
        "  model.eval()\n",
        "  return model\n",
        "\n",
        "  print('Loaded Model')"
      ],
      "metadata": {
        "id": "QnfB4lrzjo33"
      },
      "execution_count": 6,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "get_checkpoints()\n",
        "model = load_model()"
      ],
      "metadata": {
        "id": "L1YCKFKJKP1H",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "0b5b2aeb-0978-46fd-8638-bb4976431c60"
      },
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "Downloading...\n",
            "From: https://huggingface.co/hashb/semantic-segmentation-segformer/resolve/main/segformer.b3.ade.pth\n",
            "To: /content/semantic-segmentation/checkpoints/pretrained/segformer/segformer.b3.ade.pth\n",
            "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 190M/190M [00:00<00:00, 206MB/s]\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Upload image file"
      ],
      "metadata": {
        "id": "FRDvSMmvoK_0"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "uploaded = files.upload()\n",
        "for i in uploaded:\n",
        "  image_path = i\n",
        "image = io.read_image(image_path)"
      ],
      "metadata": {
        "colab": {
          "resources": {
            "http://localhost:8080/nbextensions/google.colab/files.js": {
              "data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7CgpmdW5jdGlvbiBfdXBsb2FkRmlsZXMoaW5wdXRJZCwgb3V0cHV0SWQpIHsKICBjb25zdCBzdGVwcyA9IHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCk7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICAvLyBDYWNoZSBzdGVwcyBvbiB0aGUgb3V0cHV0RWxlbWVudCB0byBtYWtlIGl0IGF2YWlsYWJsZSBmb3IgdGhlIG5leHQgY2FsbAogIC8vIHRvIHVwbG9hZEZpbGVzQ29udGludWUgZnJvbSBQeXRob24uCiAgb3V0cHV0RWxlbWVudC5zdGVwcyA9IHN0ZXBzOwoKICByZXR1cm4gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpOwp9CgovLyBUaGlzIGlzIHJvdWdobHkgYW4gYXN5bmMgZ2VuZXJhdG9yIChub3Qgc3VwcG9ydGVkIGluIHRoZSBicm93c2VyIHlldCksCi8vIHdoZXJlIHRoZXJlIGFyZSBtdWx0aXBsZSBhc3luY2hyb25vdXMgc3RlcHMgYW5kIHRoZSBQeXRob24gc2lkZSBpcyBnb2luZwovLyB0byBwb2xsIGZvciBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcC4KLy8gVGhpcyB1c2VzIGEgUHJvbWlzZSB0byBibG9jayB0aGUgcHl0aG9uIHNpZGUgb24gY29tcGxldGlvbiBvZiBlYWNoIHN0ZXAsCi8vIHRoZW4gcGFzc2VzIHRoZSByZXN1bHQgb2YgdGhlIHByZXZpb3VzIHN0ZXAgYXMgdGhlIGlucHV0IHRvIHRoZSBuZXh0IHN0ZXAuCmZ1bmN0aW9uIF91cGxvYWRGaWxlc0NvbnRpbnVlKG91dHB1dElkKSB7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICBjb25zdCBzdGVwcyA9IG91dHB1dEVsZW1lbnQuc3RlcHM7CgogIGNvbnN0IG5leHQgPSBzdGVwcy5uZXh0KG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSk7CiAgcmV0dXJuIFByb21pc2UucmVzb2x2ZShuZXh0LnZhbHVlLnByb21pc2UpLnRoZW4oKHZhbHVlKSA9PiB7CiAgICAvLyBDYWNoZSB0aGUgbGFzdCBwcm9taXNlIHZhbHVlIHRvIG1ha2UgaXQgYXZhaWxhYmxlIHRvIHRoZSBuZXh0CiAgICAvLyBzdGVwIG9mIHRoZSBnZW5lcmF0b3IuCiAgICBvdXRwdXRFbGVtZW50Lmxhc3RQcm9taXNlVmFsdWUgPSB2YWx1ZTsKICAgIHJldHVybiBuZXh0LnZhbHVlLnJlc3BvbnNlOwogIH0pOwp9CgovKioKICogR2VuZXJhdG9yIGZ1bmN0aW9uIHdoaWNoIGlzIGNhbGxlZCBiZXR3ZWVuIGVhY2ggYXN5bmMgc3RlcCBvZiB0aGUgdXBsb2FkCiAqIHByb2Nlc3MuCiAqIEBwYXJhbSB7c3RyaW5nfSBpbnB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIGlucHV0IGZpbGUgcGlja2VyIGVsZW1lbnQuCiAqIEBwYXJhbSB7c3RyaW5nfSBvdXRwdXRJZCBFbGVtZW50IElEIG9mIHRoZSBvdXRwdXQgZGlzcGxheS4KICogQHJldHVybiB7IUl0ZXJhYmxlPCFPYmplY3Q+fSBJdGVyYWJsZSBvZiBuZXh0IHN0ZXBzLgogKi8KZnVuY3Rpb24qIHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IGlucHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKGlucHV0SWQpOwogIGlucHV0RWxlbWVudC5kaXNhYmxlZCA9IGZhbHNlOwoKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIG91dHB1dEVsZW1lbnQuaW5uZXJIVE1MID0gJyc7CgogIGNvbnN0IHBpY2tlZFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgaW5wdXRFbGVtZW50LmFkZEV2ZW50TGlzdGVuZXIoJ2NoYW5nZScsIChlKSA9PiB7CiAgICAgIHJlc29sdmUoZS50YXJnZXQuZmlsZXMpOwogICAgfSk7CiAgfSk7CgogIGNvbnN0IGNhbmNlbCA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2J1dHRvbicpOwogIGlucHV0RWxlbWVudC5wYXJlbnRFbGVtZW50LmFwcGVuZENoaWxkKGNhbmNlbCk7CiAgY2FuY2VsLnRleHRDb250ZW50ID0gJ0NhbmNlbCB1cGxvYWQnOwogIGNvbnN0IGNhbmNlbFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgY2FuY2VsLm9uY2xpY2sgPSAoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9OwogIH0pOwoKICAvLyBXYWl0IGZvciB0aGUgdXNlciB0byBwaWNrIHRoZSBmaWxlcy4KICBjb25zdCBmaWxlcyA9IHlpZWxkIHsKICAgIHByb21pc2U6IFByb21pc2UucmFjZShbcGlja2VkUHJvbWlzZSwgY2FuY2VsUHJvbWlzZV0pLAogICAgcmVzcG9uc2U6IHsKICAgICAgYWN0aW9uOiAnc3RhcnRpbmcnLAogICAgfQogIH07CgogIGNhbmNlbC5yZW1vdmUoKTsKCiAgLy8gRGlzYWJsZSB0aGUgaW5wdXQgZWxlbWVudCBzaW5jZSBmdXJ0aGVyIHBpY2tzIGFyZSBub3QgYWxsb3dlZC4KICBpbnB1dEVsZW1lbnQuZGlzYWJsZWQgPSB0cnVlOwoKICBpZiAoIWZpbGVzKSB7CiAgICByZXR1cm4gewogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgICAgfQogICAgfTsKICB9CgogIGZvciAoY29uc3QgZmlsZSBvZiBmaWxlcykgewogICAgY29uc3QgbGkgPSBkb2N1bWVudC5jcmVhdGVFbGVtZW50KCdsaScpOwogICAgbGkuYXBwZW5kKHNwYW4oZmlsZS5uYW1lLCB7Zm9udFdlaWdodDogJ2JvbGQnfSkpOwogICAgbGkuYXBwZW5kKHNwYW4oCiAgICAgICAgYCgke2ZpbGUudHlwZSB8fCAnbi9hJ30pIC0gJHtmaWxlLnNpemV9IGJ5dGVzLCBgICsKICAgICAgICBgbGFzdCBtb2RpZmllZDogJHsKICAgICAgICAgICAgZmlsZS5sYXN0TW9kaWZpZWREYXRlID8gZmlsZS5sYXN0TW9kaWZpZWREYXRlLnRvTG9jYWxlRGF0ZVN0cmluZygpIDoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ24vYSd9IC0gYCkpOwogICAgY29uc3QgcGVyY2VudCA9IHNwYW4oJzAlIGRvbmUnKTsKICAgIGxpLmFwcGVuZENoaWxkKHBlcmNlbnQpOwoKICAgIG91dHB1dEVsZW1lbnQuYXBwZW5kQ2hpbGQobGkpOwoKICAgIGNvbnN0IGZpbGVEYXRhUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICAgIGNvbnN0IHJlYWRlciA9IG5ldyBGaWxlUmVhZGVyKCk7CiAgICAgIHJlYWRlci5vbmxvYWQgPSAoZSkgPT4gewogICAgICAgIHJlc29sdmUoZS50YXJnZXQucmVzdWx0KTsKICAgICAgfTsKICAgICAgcmVhZGVyLnJlYWRBc0FycmF5QnVmZmVyKGZpbGUpOwogICAgfSk7CiAgICAvLyBXYWl0IGZvciB0aGUgZGF0YSB0byBiZSByZWFkeS4KICAgIGxldCBmaWxlRGF0YSA9IHlpZWxkIHsKICAgICAgcHJvbWlzZTogZmlsZURhdGFQcm9taXNlLAogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbnRpbnVlJywKICAgICAgfQogICAgfTsKCiAgICAvLyBVc2UgYSBjaHVua2VkIHNlbmRpbmcgdG8gYXZvaWQgbWVzc2FnZSBzaXplIGxpbWl0cy4gU2VlIGIvNjIxMTU2NjAuCiAgICBsZXQgcG9zaXRpb24gPSAwOwogICAgZG8gewogICAgICBjb25zdCBsZW5ndGggPSBNYXRoLm1pbihmaWxlRGF0YS5ieXRlTGVuZ3RoIC0gcG9zaXRpb24sIE1BWF9QQVlMT0FEX1NJWkUpOwogICAgICBjb25zdCBjaHVuayA9IG5ldyBVaW50OEFycmF5KGZpbGVEYXRhLCBwb3NpdGlvbiwgbGVuZ3RoKTsKICAgICAgcG9zaXRpb24gKz0gbGVuZ3RoOwoKICAgICAgY29uc3QgYmFzZTY0ID0gYnRvYShTdHJpbmcuZnJvbUNoYXJDb2RlLmFwcGx5KG51bGwsIGNodW5rKSk7CiAgICAgIHlpZWxkIHsKICAgICAgICByZXNwb25zZTogewogICAgICAgICAgYWN0aW9uOiAnYXBwZW5kJywKICAgICAgICAgIGZpbGU6IGZpbGUubmFtZSwKICAgICAgICAgIGRhdGE6IGJhc2U2NCwKICAgICAgICB9LAogICAgICB9OwoKICAgICAgbGV0IHBlcmNlbnREb25lID0gZmlsZURhdGEuYnl0ZUxlbmd0aCA9PT0gMCA/CiAgICAgICAgICAxMDAgOgogICAgICAgICAgTWF0aC5yb3VuZCgocG9zaXRpb24gLyBmaWxlRGF0YS5ieXRlTGVuZ3RoKSAqIDEwMCk7CiAgICAgIHBlcmNlbnQudGV4dENvbnRlbnQgPSBgJHtwZXJjZW50RG9uZX0lIGRvbmVgOwoKICAgIH0gd2hpbGUgKHBvc2l0aW9uIDwgZmlsZURhdGEuYnl0ZUxlbmd0aCk7CiAgfQoKICAvLyBBbGwgZG9uZS4KICB5aWVsZCB7CiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICB9CiAgfTsKfQoKc2NvcGUuZ29vZ2xlID0gc2NvcGUuZ29vZ2xlIHx8IHt9OwpzY29wZS5nb29nbGUuY29sYWIgPSBzY29wZS5nb29nbGUuY29sYWIgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYi5fZmlsZXMgPSB7CiAgX3VwbG9hZEZpbGVzLAogIF91cGxvYWRGaWxlc0NvbnRpbnVlLAp9Owp9KShzZWxmKTsK",
              "ok": true,
              "headers": [
                [
                  "content-type",
                  "application/javascript"
                ]
              ],
              "status": 200,
              "status_text": ""
            }
          },
          "base_uri": "https://localhost:8080/",
          "height": 73
        },
        "id": "k2cOX2CUaZuK",
        "outputId": "10aa9d41-cedf-4ebe-e39e-501ce52060f9"
      },
      "execution_count": 8,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "\n",
              "     <input type=\"file\" id=\"files-588ecd48-c3e3-4199-8af1-4f923a689620\" name=\"files[]\" multiple disabled\n",
              "        style=\"border:none\" />\n",
              "     <output id=\"result-588ecd48-c3e3-4199-8af1-4f923a689620\">\n",
              "      Upload widget is only available when the cell has been executed in the\n",
              "      current browser session. Please rerun this cell to enable.\n",
              "      </output>\n",
              "      <script src=\"/nbextensions/google.colab/files.js\"></script> "
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Saving pexels-photo-1485031.jpeg to pexels-photo-1485031.jpeg\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# resize\n",
        "image = T.CenterCrop((512, 512))(image)\n",
        "# scale to [0.0, 1.0]\n",
        "image = image.float() / 255\n",
        "# normalize\n",
        "image = T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))(image)\n",
        "# add batch size\n",
        "image = image.unsqueeze(0)\n",
        "image.shape"
      ],
      "metadata": {
        "id": "Mnfbjt3vjzmI",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "e3255e3f-c3ed-47f6-f8db-c72c679af496"
      },
      "execution_count": 9,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "torch.Size([1, 3, 512, 512])"
            ]
          },
          "metadata": {},
          "execution_count": 9
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "with torch.inference_mode():\n",
        "    seg = model(image)\n",
        "seg.shape"
      ],
      "metadata": {
        "id": "lJ6xNAwzj17M",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "7253e889-2b43-4f5c-ebcd-731001f4dd17"
      },
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "torch.Size([1, 150, 512, 512])"
            ]
          },
          "metadata": {},
          "execution_count": 10
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "seg = seg.softmax(1).argmax(1).to(int)\n",
        "seg.unique()"
      ],
      "metadata": {
        "id": "EqbG_qokj30-",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "ad1c2e60-777b-45ee-f27f-44fff275fabb"
      },
      "execution_count": 11,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "tensor([ 0,  1,  4, 12])"
            ]
          },
          "metadata": {},
          "execution_count": 11
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from semseg.datasets import *\n",
        "\n",
        "palette = eval('ADE20K').PALETTE"
      ],
      "metadata": {
        "id": "dyj4dPoMj7aq"
      },
      "execution_count": 12,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "seg_map = palette[seg].squeeze().to(torch.uint8)\n",
        "show_image(seg_map)"
      ],
      "metadata": {
        "id": "02ptBGPAj8_g",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 529
        },
        "outputId": "0df8f3b6-7bfe-4ad3-a5e3-f794363abdbe"
      },
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "<PIL.Image.Image image mode=RGB size=512x512 at 0x7FBF0969DB10>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAIAAAB7GkOtAAAQuElEQVR4nO3dyXEkR5aA4eAY5IAgRFMHSDIXWJmVDmW4UBIcqMEMRhBIMoekgSCWRGYs7m/5PuOpu7o72OnxfvfIhb/99fPnAqu8PD7PvgSuc/twN/sS6ri//zX7Erb6r9kXAMAcAsB6tpOQmgBAF4LNOwIA0JQAADQlAGziqQJtPT39mH0JWwkAQFMCALBS9kOAAAA0JQDQhW9uHyH1IUAAAJoSAGjEIeAIeQ8BAgC9aMARkjZAAKCdl8dnGWARAGhLBvaV8RAgANCaDHR2M/sCyM3sqOH1dfTbHq04AbCe6V+PA0ErAsBKxkRhXtwmBAD4hKNABwLAGkYDfJTug0ACAHxJ6WsTAK5mKLTi5S5MAIBvaEBVAsB1zAL4yv39r9mXcB0BAL4n/CUJAJfyucDmvPrf8ikganLzs1gG5QgA33Pb88piqEQA+IYbHqoSAM4x/fnIqihDAICraUANAsCX3OScYXkUIAAATQkAn7O/41sWSXYCAKynAe88Pf1I9HUwAeAT7mrYIksGBADYxHbhK/EbIADAVhqQlADwnpuZFSybjAQA2IcGpCMA/It7mC2sn1wEAKApAeAftm9sZxUlIgD8zX0L3QgAQFMCAOzMaTILAQBoSgBYFls2aEkAAJoSAGz/2Z9FlYIAADQlAN3ZqUFbAgAcwt4iPgFozS3KoSyw4AQAoCkBAA7kEBCZAAAc4v7+1+xL+IYA9GVrxhhWWlgCALC/+Nv/RQDasiljpG7rLcX0XwQAGKNbA1IQgI7cisAiAA2Z/sxi7UUjAABNCUAvtmDMZQWGIgAATQlAIzZfRFB+HWb5DOgiAAA7SjT9FwEAxit/CMhCALpwywHvCEALpj/RWJMRCEB97jTgUwIA0JQAFGf7T1gW53QCANCUAAA0JQCVOWITnCU6lwAANCUAZdlbkYKFOpEA1OSmAr4lAMBk9iuzCABAUwJQkP0U6dRYtLl+C3oRgHpq3Eg0ZOmOJwCluIWAywkAEEXqHUy65z+LAAC0JQB1pN49wUnSZZxx+78IAEBbAlBE0n0TfJRxMT89/Zh9CWsIAMAOMjZAACrIuGOCM5Iu6XQNEID0kt4qcJ6FPYAAAEFpwNEEIDd3CLCaAABx5dripPs2gAAkluveAKIRACC0RBsdnwJikER3BRCTAADR2e4cRABScj8A2wkAQFMCACTg1HsEAQBoSgAAmhKAfJyF6cnK350AADQlAABNCUAyTsF0Zv3vSwAAmhIAgKYEIJnbh7vZlwAzBX8KlOsHQQUgmeCrH0hEAACaEgCApgQgE89/YHEj7EcAgDVuH+58JCE7AUjDrgfiu7//NfsSriAACbw8Ppv+8JY7YhcCEJ2FDlnk2v4vAgAkZW+03c3sC+BL1jeRRVifL4/P3ojeQgAiinBrAeUJQBSGPmT39PQj19sA3gMIwfSHddw7WwjAfFYwMIUATGb6w0ZuotUEYCYLF5hIAObw5V7YkbtpHZ8CGs1KhapyfQRocQIYya4fjuPmWsEJYARLEwjICeBwpj+M4V67lhPAgSxH6CPdGwCLE8BxTH8Yz313FSeAnVl/9HT7cGfxpyMA+7D0IQi/EX05j4B2YPqDuyAjAdjER/shIHflhQRgPYsMOMn4EaBlWX776+fP2deQjLkPKQx+JyBjA5wArmP6A2UIwBVMf+ArT08/Zl/C1QTgIt7shXTcs9/yPYBzLCCgMCeAL5n+kJ27+DwngE9YNLCL0+dw3FBhOQG8Z7FCJe7oMwTgX6wVoA8B+IfpDyW5tb8iAH+zRIBuBGBZTH+gJQEw/aG+Abe53wLKx/QH2modANMfDhXqN1TiXEkcfQNgNUA37vp3+gYAaEgD3moaAIsAoGkAgLbs/151DICXH5ozBE46BgBgXxm/BLA0DIDyA4tRsCxLwwAAcNIrAJoPvDIQegUA4K3mDRAAgKYaBaB56mG824e701+zL+SczpOhUQCAkd7O/fgZ6KlLADpHHjiv7XzoEgBgpE/3+w4B0bQIQNu8A5zRIgDASBl3+j23iQIAsEnSHwJaOgSgZ9iBazWcFfUDAMCnigegYdJhujP3XfC3B7pNjOIBAMYLPuV5JQDAbgp84/faQ0Ded4CXZbmZfQEH6naag4myz/2enACArdpO/9Tb/0UAgO2KnbaL/e2cUTYAfV5CiODl8bnbTZd9+78UDgAwXrcGZCcAwJ5qNODbv4sC2/+lagBqLEFI6swN6N4MpWYAgLkKDPoCfwvfKvg9gA4vG8T39k48fU7UvRmNEwBwuKSfEcp4zVepFoDyLxgwUu2RUi0AAFxIAADOKXwIKBWAwq8TwO5KBQDgCFU3lwIAcJ0aXwNeKgWgaqKBCEpOmDoBADjUqQFltv+LAABcrtg5oEgAir0qAAMUCQDAGH/+8fvsS9iNAAA0JQAATVUIgDcAgJHKPAWqEAAAVhAAgKvVOAQIAEBT6QPgDQBgigKHgPQBAGAdAQBoSgAAmhIAgKZyB8A7wMBE2d8Hzh0AAFYTAICmBACgKQEAaCpxALwDDLBF4gAATJf6g0ACANCUAAA0JQAATQkAwCZ53wYQAICmBACgKQEAaEoAAJoSAICmBACgKQEAaEoAAJoSAICmBABgk//+n/+bfQkrCQBAUwIA0JQAAGzix+AASEYAAJoSAICtkj4FEgCAHWRsgAAA7OPPP37PlYGb2RcAUMrbBgT/jpgAABzlNQYxS+AREMDhYj4aEgCAEQK+Q+AREMA4oR4KOQEATBDhQJA1AC+Pz7MvAWCruQ3IGgCAGiYeBQQAYL4pGRAAgCgGN0AAAAIZ2QABAIhlWAMEACCcMQ0QAICIBjRAAACaShkA3wIDOjj6EJAyAABNHNoAAQAI7bgGpAzA7cPd7EsASC9lAADYTgCgNefpFA56CuQfCAM1vZ3s7z44927on/mTxPHnH7/v/s+QEQAo6MyIv/A/qAQdeAQE1ezyVOf24e701/b/Kvay+4MgAQDOkYFQ9m2AR0BQykHD2vsEJaUMgPUHnxqzVX/3v+J+zCtlAIA4HA4G2/HjQAIARUR4Uu9wkIsAQAURpv9Hn17VaxXO/7sMIADAUDFb1ZOPgQIks9eHQQUA0rOnbmiXBggAQFMCALlV2v57B/gq2w8BAgCJVZr+jJcyABY9wLL5EJAyAMBiJ8SyLNsakDIAHhRCvenvvh4vZQCgOdOft1YfAgQAkjH92YsAADOZ/hMJAEBuq38dWgCAaWz/5xIAyKTeGwBMJADAHLb/0wkAQClPTz8u/JP+gTCQRqXnP7b/BzlN/7cNuL//9emfWQQAsqg0/RnpNO5PGXh3OBAAYDTb//E+fS7kPQBIwPafIwgAMJTt/+5efwvo8rd/TzwCgugqbf9N/4NcO/pP8p0ALCBaqTT9Oc66wZgvAEBSdm/RCADEVWn7b/oHlOw9AGsI0nHbhuUEABzI9B/m/v7Xxy/9npfsBAB9FHj+Y/qP91UDfBEMoKlPwyAAAE0JAHAIz38Ge/0+8OUEANif6Z+CAAC08PFtAAEAdmb7P8u1T4EEACLK+xlQ03+up6cfl/8wnAAANCUAEI7tP6td9RIIAEAX794HFgCIxfafYQQA2IHpn5EAAJRyeYwFANjK9j8pAQBoKlMA7DIgIDdmQF99Jfjdd8QyBQDKy/sRIKK55Gch0gTALgOieXl8dmNG9ucfv5//WYg0AQBCMfqzOPPrQAIAUXj+w+7edvpjBgQAQsg1/W3/Ezm9WIn/ofBWG7WZ/hzqq5csRwCAIEz/pD594QQAJku0/Tf9ixEAmCnR9Ce7j/0WAJgm1/S3/S/g3YsoADCH6c8Ub1/Km4nXAW2Z/kz0+oImOAFYfBRj+hNEggBAJaY/cQgAjJNr+lNeggC4Z2AK2//yEgQAasi1lTH9OxAAGMH0JyABAP7F9O9DAIB/mP6tCADwN9O/mwQBsChhADdaQwkCABzN9O9JAACa8mNw0Jq9f2dOAHC4sF8CMP2bEwBoyvRHAKAj059FAGAA05aYBADaESROBAB6Mf15JQAATQkANGL7z1sCANCUAEAXtv+8IwDQgunPR9EDYNXCdu4jPhU9AMBGpj9fEQCozPTnDAGAskx/zhMAGGH8LDb9+ZYAADQlAFCQ7T+XEACoxvTnQqEDYB3Dtdw1XC50AICrmP5cRQAAmhIAKML2n2sJAFRg+rOCAEB6pj/r3My+AGA9o58tnAAAmgodgNuHu9mXAHHZ/rNR6AAAXzH92U4AIB/Tn10IACRj+rMXAQBoysdAIQ17f/blBAA5mP7sTgBgEBOcaAQAxlnXgJfHZ/HgCAIAoRn9HEcAYKirBrrpz6EEAIIy/Tla9AD4OSDquWSym/4MED0AUNKZ+e4tX4YRAJjj00Fv9DOSAMBMbye+6c9gfgoCJjP3mSXBCcD7wABHSBAAAI6QIwAOAQC7yxEAAHaXJgAOAQD7ShOARQMAdpUpAADsKFkAHAIA9pIsAADsJV8AHAIAdpEvAADsImUAHAIAtksZgEUDADbLGgAANkocAIcAgC0SBwCALXIHwCEAYLXcAVg0AGCt9AEAYB0BAGiqQgA8BQJYoUIAAFhBAACaKhIAT4EArlUkAIsGAFypTgAAuEqpADgEAFyuVAAAuFy1ADgEAFyoWgAAuFDBADgEAFyiYAAWDQC4QM0ALBoA8J2yAQDgvMoBcAgAOKNyABYNAPha8QAsGgDwhfoBAOBTLQLgEADwUYsAAPBRlwA4BAC80yUAALzTKAAOAQBvNQoAAG/1CoBDAMCrm9kXALCnb/d5L4/PY64kvt/++vlz9jWM5uWHYq493BsCJx1PALcPd15+KMBD3Y16vQfwyrqB7LbcxSbASdMALFYA0F7fAAB52cDtQgAAmhIAIJldtv/OEIsAALQlAEAmdu47EgCgKS0RACCN3Ud28wYIAEBTAgDQlAAANCUAQA4HPa/v/DaAAAA0JQAATQkAkEDnBzXHEQCApgQAiM72/yACANCUAAA0JQBAaAOe/7R9xCQAAE31DcDL4/PsSwC+0XZvPkbfAADBmf5HaxoA23/grZ6xaRoAILieE3kwAQDCMf3HEAAgFtN/mI4B8AYAhGX6j9QxAEBMpv9gAgCEYPqPJwAATXUMgI0GROOunKJjAABYegbAp4AgFNv/WToGAIjD9J9IAACaEgBgmlDb/1AXM0a7AHgDAOCkVwBMf4ij4Y47mpvZFzCI0Q/wTv0AGP0Anyr+CMj0h5g8/4mgcgBMf4AzCj4CMvchuJjb/4ajo9oJoOFLCLBOqQCY/hBfzO1/TxUeAZn7kIXpH0riAJj7kEvw6X/7cNdtqmR9BNTtdYLsgk//nlIGwPQH2C5fAEx/SMf2P6ZM7wEY/ZCR6R9WjgAY/ZCU6R9ZgkdApj/AEUKfAIx+yCvd3r/hwAkagIavBFSSbvr3FC4ARj+kZvQnEigARj9kZ/rnEuVNYNMfYLDJJwBzH8qw/U9nUwD+94t//T8X/GeNfqjE9M9oTQC+mvtv/8CZBhj9UEyN6d/w10CvDsC30//1j31sQLf/c6G8GqO/rZsLB/oKb/+bb41+gGBGfArI9IeSbP+zC/Q9ACALo7+Gw08Atv9QjOlfRpQvggEwmAAAV7D9r+TYAHj+A5WY/sU4AQA0JQDARWz/6xEAgKYODIA3AKAM2/+SnAAAmjoqAJf8IjSQgu1/VUcFwA9/AgTnERBAU/8PzcTX+DN9v8kAAAAASUVORK5CYII=\n"
          },
          "metadata": {},
          "execution_count": 13
        }
      ]
    }
  ]
}