--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-oxford-iiit-pets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the cepha-cutoutCLAHE dataset. It achieves the following results on the evaluation set: - Loss: 0.6194 - Accuracy: 0.7639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0901 | 1.0 | 32 | 0.9278 | 0.4931 | | 0.5383 | 2.0 | 64 | 0.6985 | 0.6319 | | 0.2707 | 3.0 | 96 | 0.6691 | 0.7222 | | 0.0366 | 4.0 | 128 | 0.9557 | 0.6806 | | 0.0066 | 5.0 | 160 | 0.8927 | 0.7083 | | 0.0075 | 6.0 | 192 | 1.2046 | 0.7014 | | 0.0013 | 7.0 | 224 | 1.2583 | 0.7083 | | 0.0006 | 8.0 | 256 | 1.3180 | 0.6944 | | 0.0004 | 9.0 | 288 | 1.3468 | 0.7014 | | 0.0002 | 10.0 | 320 | 1.3582 | 0.6875 | | 0.0002 | 11.0 | 352 | 1.3868 | 0.6875 | | 0.0002 | 12.0 | 384 | 1.4094 | 0.6806 | | 0.0002 | 13.0 | 416 | 1.4392 | 0.6806 | | 0.0002 | 14.0 | 448 | 1.4536 | 0.6875 | | 0.0001 | 15.0 | 480 | 1.4695 | 0.6875 | | 0.0001 | 16.0 | 512 | 1.4850 | 0.6875 | | 0.0001 | 17.0 | 544 | 1.5004 | 0.6875 | | 0.0001 | 18.0 | 576 | 1.5110 | 0.6875 | | 0.0001 | 19.0 | 608 | 1.5219 | 0.6875 | | 0.0001 | 20.0 | 640 | 1.5340 | 0.6875 | | 0.0001 | 21.0 | 672 | 1.5461 | 0.6875 | | 0.0001 | 22.0 | 704 | 1.5541 | 0.6875 | | 0.0001 | 23.0 | 736 | 1.5624 | 0.6875 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0