File size: 2,036 Bytes
60fb9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1bfab
 
 
 
 
 
60fb9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1bfab
 
 
 
 
60fb9c5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: apache-2.0
base_model: muchad/idt5-base
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: idt5-base-qaqg
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# idt5-base-qaqg

This model is a fine-tuned version of [muchad/idt5-base](https://huggingface.co/muchad/idt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2262
- Rouge1: 0.4339
- Rouge2: 0.2405
- Rougel: 0.4040
- Rougelsum: 0.4051
- Bleu: 0.1913

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu   |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:------:|
| 1.413         | 1.0   | 4695  | 1.3393          | 0.4005 | 0.2102 | 0.3742 | 0.3750    | 0.1641 |
| 1.2176        | 2.0   | 9390  | 1.2736          | 0.4212 | 0.2289 | 0.3924 | 0.3933    | 0.1809 |
| 1.1113        | 3.0   | 14085 | 1.2329          | 0.4270 | 0.2343 | 0.3978 | 0.3990    | 0.1851 |
| 1.028         | 4.0   | 18780 | 1.2241          | 0.4335 | 0.2383 | 0.4035 | 0.4045    | 0.1901 |
| 0.9813        | 5.0   | 23475 | 1.2262          | 0.4339 | 0.2405 | 0.4040 | 0.4051    | 0.1913 |


### Framework versions

- Transformers 4.46.0
- Pytorch 2.4.0a0+f70bd71a48.nv24.06
- Datasets 3.0.2
- Tokenizers 0.20.1