File size: 21,458 Bytes
7441f42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import torch, os, PIL, numbers
from PIL import Image
import cv2

from transformers.modeling_utils import PreTrainedModel
from transformers.models.siglip.modeling_siglip import SiglipVisionModel
from transformers import AutoConfig, AutoModel, SiglipImageProcessor, SiglipVisionConfig, PretrainedConfig
from typing import Union
import torch.nn.functional as F
import numpy as np


def crop_clip(clip, min_h, min_w, h, w):
    if isinstance(clip[0], np.ndarray):
        cropped = [img[min_h:min_h + h, min_w:min_w + w, :] for img in clip]

    elif isinstance(clip[0], PIL.Image.Image):
        cropped = [
            img.crop((min_w, min_h, min_w + w, min_h + h)) for img in clip
        ]
    else:
        raise TypeError('Expected numpy.ndarray or PIL.Image' +
                        'but got list of {0}'.format(type(clip[0])))
    return cropped


class Normalize(object):
    """Normalize a clip with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
    will normalize each channel of the input ``torch.*Tensor`` i.e.
    ``input[channel] = (input[channel] - mean[channel]) / std[channel]``
    .. note::
        This transform acts out of place, i.e., it does not mutates the input tensor.
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
    """

    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, clip):
        """
        Args:
            clip (Tensor): Tensor clip of size (T, C, H, W) to be normalized.
        Returns:
            Tensor: Normalized Tensor clip.
        """
        return normalize(clip, self.mean, self.std)

    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)


class CenterCrop(object):
    """Extract center crop at the same location for a list of images
    Args:
    size (sequence or int): Desired output size for the
    crop in format (h, w)
    """

    def __init__(self, size):
        if isinstance(size, numbers.Number):
            size = (size, size)

        self.size = size

    def __call__(self, clip):
        """
        Args:
        img (PIL.Image or numpy.ndarray): List of images to be cropped
        in format (h, w, c) in numpy.ndarray
        Returns:
        PIL.Image or numpy.ndarray: Cropped list of images
        """
        h, w = self.size
        if isinstance(clip[0], np.ndarray):
            im_h, im_w, im_c = clip[0].shape
        elif isinstance(clip[0], PIL.Image.Image):
            im_w, im_h = clip[0].size
        else:
            raise TypeError('Expected numpy.ndarray or PIL.Image' +
                            'but got list of {0}'.format(type(clip[0])))
        if w > im_w or h > im_h:
            error_msg = (
                'Initial image size should be larger then '
                'cropped size but got cropped sizes : ({w}, {h}) while '
                'initial image is ({im_w}, {im_h})'.format(
                    im_w=im_w, im_h=im_h, w=w, h=h))
            raise ValueError(error_msg)

        x1 = int(round((im_w - w) / 2.))
        y1 = int(round((im_h - h) / 2.))
        cropped = crop_clip(clip, y1, x1, h, w)

        return cropped


def resize_clip(clip, size, interpolation='bilinear'):
    if isinstance(clip[0], np.ndarray):
        if isinstance(size, numbers.Number):
            im_h, im_w, im_c = clip[0].shape
            # Min spatial dim already matches minimal size
            if (im_w <= im_h and im_w == size) or (im_h <= im_w
                                                   and im_h == size):
                return clip
            new_h, new_w = get_resize_sizes(im_h, im_w, size)
            size = (new_w, new_h)
        else:
            size = size[0], size[1]
        if interpolation == 'bilinear':
            np_inter = cv2.INTER_LINEAR
        else:
            np_inter = cv2.INTER_NEAREST
        scaled = [
            cv2.resize(img, size, interpolation=np_inter) for img in clip
        ]
    elif isinstance(clip[0], PIL.Image.Image):
        if isinstance(size, numbers.Number):
            im_w, im_h = clip[0].size
            # Min spatial dim already matches minimal size
            if (im_w <= im_h and im_w == size) or (im_h <= im_w
                                                   and im_h == size):
                return clip
            new_h, new_w = get_resize_sizes(im_h, im_w, size)
            size = (new_w, new_h)
        else:
            size = size[1], size[0]
        if interpolation == 'bilinear':
            pil_inter = PIL.Image.BILINEAR
        else:
            pil_inter = PIL.Image.NEAREST
        scaled = [img.resize(size, pil_inter) for img in clip]
    else:
        raise TypeError('Expected numpy.ndarray or PIL.Image' +
                        'but got list of {0}'.format(type(clip[0])))
    return scaled


def _is_tensor_clip(clip):
    return torch.is_tensor(clip) and clip.ndimension() == 4


def get_resize_sizes(im_h, im_w, size):
    if im_w < im_h:
        ow = size
        oh = int(size * im_h / im_w)
    else:
        oh = size
        ow = int(size * im_w / im_h)
    return oh, ow


def normalize(clip, mean, std, inplace=False):
    if not _is_tensor_clip(clip):
        raise TypeError('tensor is not a torch clip.')

    if not inplace:
        clip = clip.clone()

    dtype = clip.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=clip.device)
    std = torch.as_tensor(std, dtype=dtype, device=clip.device)
    clip.sub_(mean[:, None, None, None]).div_(std[:, None, None, None])

    return clip


class Resize(object):
    """Resizes a list of (H x W x C) numpy.ndarray to the final size
    The larger the original image is, the more times it takes to
    interpolate
    Args:
    interpolation (str): Can be one of 'nearest', 'bilinear'
    defaults to nearest
    size (tuple): (widht, height)
    """

    def __init__(self, size, interpolation='nearest'):
        self.size = size
        self.interpolation = interpolation

    def __call__(self, clip):
        resized = resize_clip(
            clip, self.size, interpolation=self.interpolation)
        return resized


class Compose(object):
    """Composes several transforms
    Args:
    transforms (list of ``Transform`` objects): list of transforms
    to compose
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, clip):
        for t in self.transforms:
            clip = t(clip)
        return clip


def convert_img(img):
    """Converts (H, W, C) numpy.ndarray to (C, W, H) format"""
    if len(img.shape) == 3:
        img = img.transpose(2, 0, 1)
    if len(img.shape) == 2:
        img = np.expand_dims(img, 0)
    return img


class ClipToTensor(object):
    """Convert a list of m (H x W x C) numpy.ndarrays in the range [0, 255]
    to a torch.FloatTensor of shape (C x m x H x W) in the range [0, 1.0]
    """

    def __init__(self, channel_nb=3, div_255=True, numpy=False):
        self.channel_nb = channel_nb
        self.div_255 = div_255
        self.numpy = numpy

    def __call__(self, clip):
        """
        Args: clip (list of numpy.ndarray): clip (list of images)
        to be converted to tensor.
        """
        # Retrieve shape
        if isinstance(clip[0], np.ndarray):
            h, w, ch = clip[0].shape
            assert ch == self.channel_nb, "Got {0} instead of 3 channels".format(ch)
        elif isinstance(clip[0], Image.Image):
            w, h = clip[0].size
        else:
            raise TypeError(
                "Expected numpy.ndarray or PIL.Image\
            but got list of {0}".format(
                    type(clip[0])
                )
            )

        np_clip = np.zeros([self.channel_nb, len(clip), int(h), int(w)])

        # Convert
        for img_idx, img in enumerate(clip):
            if isinstance(img, np.ndarray):
                pass
            elif isinstance(img, Image.Image):
                img = np.array(img, copy=False)
            else:
                raise TypeError(
                    "Expected numpy.ndarray or PIL.Image\
                but got list of {0}".format(
                        type(clip[0])
                    )
                )
            img = convert_img(img)
            np_clip[:, img_idx, :, :] = img
        if self.numpy:
            if self.div_255:
                np_clip = np_clip / 255.0
            return np_clip

        else:
            tensor_clip = torch.from_numpy(np_clip)

            if not isinstance(tensor_clip, torch.FloatTensor):
                tensor_clip = tensor_clip.float()
            if self.div_255:
                tensor_clip = torch.div(tensor_clip, 255)
            return tensor_clip


class VisionTowerConfig(PretrainedConfig):
    model_type = "vision_tower"

    def __init__(self, vision_tower_name: str = None, **kwargs):
        super().__init__()
        self.vision_tower_name = vision_tower_name


class ProcessorWrapper:
    def __init__(self, transform=None, processor=None, height=378, width=378, frames_per_clip=1,
                 image_mean=[0.48145466, 0.4578275, 0.40821073]):
        assert transform is not None or processor is not None, "ERROR: you did not define both `transform` and `processor`! You must define either transform or processor"
        assert transform is None or processor is None, "ERROR: you did defined both `transform` and `processor`! You must define only one of: transform or processor"
        self._size = {
            "height": height,
            "width": width,
            "frames_per_clip": frames_per_clip
        }
        self._transforms = transform
        self._processor = processor
        self.image_mean = image_mean

    @property
    def size(self):
        return self._size

    def preprocess(self, image, return_tensors='pt'):
        # Ensure image is a PIL Image
        output = {}
        if self._transforms is not None:
            output['pixel_values'] = [self._transforms(image)]

        else:
            output = self._processor(image, return_tensors='pt')
        return output

    def save_pretrained(self, save_path):
        if self._transforms is not None:
            transform_dict = transform_to_dict(self._transforms)
            transform_dict["image_processor_type"] = "transforms"
            with open(os.path.join(save_path, 'preprocessor_config.json'), 'w') as f:
                json.dump(transform_dict, f, indent=4)
        else:
            self._processor.save_pretrained(save_path)
        return


class VisionTower(PreTrainedModel):
    config_class = VisionTowerConfig

    def __init__(self, model_name_or_path: str, config: PretrainedConfig, vision_config: VisionTowerConfig = None):
        super().__init__(vision_config)
        self.vision_tower_name = model_name_or_path
        self.vision_config = vision_config
        self.select_layer = getattr(config, "mm_vision_select_layer", -2)
        self.select_feature = getattr(config, "mm_vision_select_feature", "patch")
        self.encode_batch_size = getattr(config, "encode_batch_size", 0) // 2
        self.num_encode_batch = getattr(config, "num_encode_batch", 0) // 2
        self.temporal_tubelet_size = getattr(vision_config, "tubelet_size", 1)

    def feature_select(self, image_features):
        if self.select_layer is not None:
            image_features = image_features.hidden_states[self.select_layer]
            
        if self.select_feature == "patch":
            image_features = image_features[:, 1:]
        elif self.select_feature == "cls_patch":
            image_features = image_features
        else:
            raise ValueError(f"Unexpected select feature: {self.select_feature}")
            
        return image_features

    def vision_tower_forward(self, image):
        image_feature = self.vision_tower(image, output_hidden_states=True)
        return image_feature
    
    def _forward(self, images, out_T=1):
        if type(images) is list:
            image_features = []
            for image in images:
                image_feature = self.vision_tower_forward(image.to(device=self.device, dtype=self.dtype).unsqueeze(0))
                image_feature = self.feature_select(image_feature).to(image.dtype)
                image_feature = image_features.reshape(image_feature.shape[0], self.W, self.H, self.D)
                image_features.append(image_feature)
        else:
            original_shape = images.shape
            if len(original_shape) == 5 and self.T == 1:
                # downsample temporally if needed, and reshape from (B, T, C, W, H) to (B*T, C, W, H).
                images = images[:, ::original_shape[1] // out_T, ...]
                original_shape = images.shape
                images = images.view(-1, *original_shape[2:])

            image_features = self.vision_tower_forward(images.to(device=self.device, dtype=self.dtype))
            image_features = self.feature_select(image_features).to(images.dtype)
            # Reshape back to (B, T, ...) if necessary
            if len(original_shape) == 5 and self.T == 1:
                # Assuming the feature dimension does not change, adapt the following line if it does
                new_shape = list(image_features.shape[:-2]) + [self.W, self.H, self.hidden_size]
                image_features = image_features.reshape(new_shape)
                feature_size = image_features.shape[1:]
                image_features = image_features.view(original_shape[0], original_shape[1], *feature_size)
                
            else:
                image_features = image_features.reshape(image_features.shape[0], self.T, self.W, self.H, self.hidden_size)
                
        return image_features
    
    def forward(self, images):
        return self._forward(images)

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2


class InternVideoTower(VisionTower):
    def __init__(self, model_name_or_path: str, config: PretrainedConfig, vision_config: PretrainedConfig = None):
        if vision_config is None:
            vision_config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)

        super().__init__(model_name_or_path, config, vision_config)
        self.vision_config = vision_config
        normalize = ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))

        print('loading: ', model_name_or_path)
        model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True)
        self.vision_tower = model.to(dtype=eval(config.model_dtype))

        transform = Compose([
            Resize(self.vision_config.img_size, interpolation='bilinear'),
            CenterCrop(size=(self.vision_config.img_size, self.vision_config.img_size)),
            ClipToTensor(),
            Normalize(mean=normalize[0], std=normalize[1])
        ])

        self.vision_processor = ProcessorWrapper(transform=transform,
                                                 height=self.vision_config.img_size,
                                                 width=self.vision_config.img_size,
                                                 frames_per_clip=self.vision_config.num_frames,
                                                 image_mean=normalize[0])

        self.W = self.H = vision_config.img_size // vision_config.patch_size
        self.T = self.vision_config.num_frames // self.vision_config.tubelet_size
        self.num_frames = self.vision_config.num_frames
        self.hidden_size = vision_config.d_model
        self.vision_select_layer=self.select_layer
        self.select_layer=None

    def vision_tower_forward(self, video):
        if video.shape[-3] < self.num_frames:
            video = video.repeat_interleave(self.num_frames, dim=-3)
        elif video.shape[-3] > self.num_frames:
            video = video[:, :, ::video.shape[-3] // self.num_frames, ...]

        video_feature = self.vision_tower(video.to(device=self.device, dtype=self.dtype),
                                          x_vis_return_idx=self.vision_select_layer, x_vis_only=True)
        
        return video_feature

    @property
    def device(self):
        return self.vision_tower.pos_embed.device


class SiglipVisionTower(VisionTower):
    def __init__(self, model_name_or_path: str, config: PretrainedConfig, vision_config: PretrainedConfig = None):
        if vision_config is None:
            vision_config = SiglipVisionConfig.from_pretrained(model_name_or_path)

        super().__init__(model_name_or_path, config, vision_config)
        self.vision_config = vision_config
        self.vision_tower_name = model_name_or_path
        self.vision_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name)

        print('loading: ', model_name_or_path)
        self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)

        self.hidden_size = self.vision_config.hidden_size
        self.W = self.H = self.vision_config.image_size // self.vision_config.patch_size
        self.T = 1
        self.select_feature = "cls_patch"


class ApolloVisionTower(PreTrainedModel):
    def __init__(self, config, vision_tower_cfg):
        super(ApolloVisionTower, self).__init__(config, vision_tower_cfg)
        self.model_name_or_path = vision_tower_cfg._name_or_path
        self.vision_towers = vision_tower_cfg.vision_towers
        self._config = vision_tower_cfg

        for vision_tower_name in self.vision_towers:
            if 'internvideo' in vision_tower_name.lower():
                vision_tower = InternVideoTower(os.path.join(vision_tower_cfg._name_or_path, vision_tower_name), config)
            elif 'siglip' in vision_tower_name.lower():
                vision_tower = SiglipVisionTower(os.path.join(vision_tower_cfg._name_or_path, vision_tower_name),
                                                 config)

            setattr(self, vision_tower_name, vision_tower)

        self.vision_processor = [getattr(self, vt).vision_processor for vt in self.vision_towers]
        self.num_vision_encoders = len(self.vision_towers)
        self.W = self.H = max([getattr(self, vt).W for vt in self.vision_towers])
        self.T = max([getattr(self, vt).T for vt in self.vision_towers])
        self.max_tubelet_size = max(
            [getattr(getattr(self, vt).vision_config, 'tubelet_size', 1) for vt in self.vision_towers])
        
        self._hidden_size = sum([getattr(self, vt).hidden_size for vt in self.vision_towers])
        self.token_output_shape = (self.T, self.W, self.H)
        self.config.num_vision_encoders = self.num_vision_encoders
        self.config.vision_towers = self.vision_towers
        self.config.token_output_shape = self.token_output_shape

    def forward(self, x):
        output_features = []
        for x_s, vision_tower_name in zip(x, self.vision_towers):
            vision_tower = getattr(self, vision_tower_name)
            features = vision_tower._forward(x_s, out_T=self.T)

            if len(features.shape) != len(self.token_output_shape) + 2:
                features = features.unsqueeze(1)

            if features.shape[-len(self.token_output_shape) - 1:-1] != self.token_output_shape:
                features = features.permute(0, 4, 1, 2, 3).contiguous()  # shape [B, D, T, W, H]
                features = F.interpolate(features.to(torch.float32), size=self.token_output_shape, mode='trilinear',
                                         align_corners=False).to(features.dtype)
                features = features.permute(0, 2, 3, 4, 1).contiguous()

            output_features.append(features)

        output_features = torch.cat(output_features, dim=-1)
        output_features = torch.flatten(output_features, start_dim=1, end_dim=-2)
        return output_features

    def save_pretrained(
            self,
            save_directory: Union[str, os.PathLike],
            state_dict=None,
            **kwargs,
    ):
        if state_dict is None:
            state_dict = self.state_dict()

        for vision_tower_name in self.vision_towers:
            vision_tower = getattr(self, vision_tower_name)
            vision_tower_state_dict = OrderedDict(
                {k.split(f"vision_tower.{vision_tower_name}.vision_tower.")[-1]: v for k, v in state_dict.items() if
                 vision_tower_name in k}
            )
            vision_tower.vision_tower.save_pretrained(os.path.join(save_directory, vision_tower_name),
                                                      state_dict=vision_tower_state_dict, **kwargs)
            vision_tower.vision_processor.save_pretrained(os.path.join(save_directory, vision_tower_name))

        config = self.config
        config.configs = {}
        config.save_pretrained(save_directory)

    @property
    def patch_size(self):
        return self._patch_size

    @property
    def image_size(self):
        return self._image_size

    @property
    def hidden_size(self):
        return self._hidden_size