File size: 10,674 Bytes
aa82052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
{
  "results": {
    "hellaswag": {
      "acc,none": 0.68123879705238,
      "acc_stderr,none": 0.004650438781745276,
      "acc_norm,none": 0.8660625373431587,
      "acc_norm_stderr,none": 0.003398890525229556,
      "alias": "hellaswag"
    },
    "eq_bench": {
      "eqbench,none": 70.00837363646892,
      "eqbench_stderr,none": 2.230997557081673,
      "percent_parseable,none": 99.41520467836257,
      "percent_parseable_stderr,none": 0.5847953216374293,
      "alias": "eq_bench"
    }
  },
  "group_subtasks": {
    "eq_bench": [],
    "hellaswag": []
  },
  "configs": {
    "eq_bench": {
      "task": "eq_bench",
      "dataset_path": "pbevan11/EQ-Bench",
      "validation_split": "validation",
      "doc_to_text": "prompt",
      "doc_to_target": "reference_answer_fullscale",
      "process_results": "def calculate_score_fullscale(docs, results):\n    reference = eval(docs[\"reference_answer_fullscale\"])\n    user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n    # First check that the emotions specified in the answer match those in the reference\n    if len(user.items()) != 4:\n        # print('! Error: 4 emotions were not returned')\n        # print(user)\n        return {\"eqbench\": 0, \"percent_parseable\": 0}\n    emotions_dict = {}\n    for emotion, user_emotion_score in user.items():\n        for i in range(1, 5):\n            if emotion == reference[f\"emotion{i}\"]:\n                emotions_dict[emotion] = True\n    if len(emotions_dict) != 4:\n        print(\"! Error: emotions did not match reference\")\n        print(user)\n        return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n    difference_tally = (\n        0  # Tally of differerence from reference answers for this question\n    )\n\n    # Iterate over each emotion in the user's answers.\n    for emotion, user_emotion_score in user.items():\n        # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n        for i in range(1, 5):\n            if emotion == reference[f\"emotion{i}\"]:\n                d = abs(\n                    float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n                )\n                # this will be a value between 0 and 10\n                if d == 0:\n                    scaled_difference = 0\n                elif d <= 5:\n                    # S-shaped scaling function\n                    # https://www.desmos.com/calculator\n                    # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n                    scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n                else:\n                    scaled_difference = d\n                difference_tally += scaled_difference\n\n    # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n    # The adjustment constant is chosen such that answering randomly produces a score of zero.\n    adjust_const = 0.7477\n    final_score = 10 - (difference_tally * adjust_const)\n    final_score_percent = final_score * 10\n\n    return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "eqbench",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "percent_parseable",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "do_sample": false,
        "temperature": 0.0,
        "max_gen_toks": 80,
        "until": [
          "\n\n"
        ]
      },
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 2.1
      }
    },
    "hellaswag": {
      "task": "hellaswag",
      "group": [
        "multiple_choice"
      ],
      "dataset_path": "hellaswag",
      "training_split": "train",
      "validation_split": "validation",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    def _process_doc(doc):\n        ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n        out_doc = {\n            \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n            \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n            \"gold\": int(doc[\"label\"]),\n        }\n        return out_doc\n\n    return dataset.map(_process_doc)\n",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{label}}",
      "doc_to_choice": "choices",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    }
  },
  "versions": {
    "eq_bench": 2.1,
    "hellaswag": 1.0
  },
  "n-shot": {
    "eq_bench": 0,
    "hellaswag": 0
  },
  "higher_is_better": {
    "eq_bench": {
      "eqbench": true,
      "percent_parseable": true
    },
    "hellaswag": {
      "acc": true,
      "acc_norm": true
    }
  },
  "n-samples": {
    "hellaswag": {
      "original": 10042,
      "effective": 10042
    },
    "eq_bench": {
      "original": 171,
      "effective": 171
    }
  },
  "config": {
    "model": "hf",
    "model_args": "pretrained=Sao10K/Fimbulvetr-11B-v2",
    "model_num_parameters": 10731524096,
    "model_dtype": "torch.float16",
    "model_revision": "main",
    "model_sha": "b2dcd534dc3a53ff84e60a53b87816185169be19",
    "batch_size": "auto",
    "batch_sizes": [
      16
    ],
    "device": "cuda:0",
    "use_cache": null,
    "limit": null,
    "bootstrap_iters": 100000,
    "gen_kwargs": null,
    "random_seed": 0,
    "numpy_seed": 1234,
    "torch_seed": 1234,
    "fewshot_seed": 1234
  },
  "git_hash": null,
  "date": 1719546844.0477293,
  "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture:                       x86_64\nCPU op-mode(s):                     32-bit, 64-bit\nAddress sizes:                      46 bits physical, 48 bits virtual\nByte Order:                         Little Endian\nCPU(s):                             24\nOn-line CPU(s) list:                0-23\nVendor ID:                          GenuineIntel\nModel name:                         Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family:                         6\nModel:                              85\nThread(s) per core:                 2\nCore(s) per socket:                 12\nSocket(s):                          1\nStepping:                           7\nBogoMIPS:                           4400.47\nFlags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor:                  KVM\nVirtualization type:                full\nL1d cache:                          384 KiB (12 instances)\nL1i cache:                          384 KiB (12 instances)\nL2 cache:                           12 MiB (12 instances)\nL3 cache:                           38.5 MiB (1 instance)\nNUMA node(s):                       1\nNUMA node0 CPU(s):                  0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit:        Not affected\nVulnerability L1tf:                 Not affected\nVulnerability Mds:                  Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown:             Not affected\nVulnerability Mmio stale data:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed:             Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2:           Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds:                Not affected\nVulnerability Tsx async abort:      Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
  "transformers_version": "4.41.2",
  "upper_git_hash": null,
  "tokenizer_pad_token": [
    "<unk>",
    0
  ],
  "tokenizer_eos_token": [
    "</s>",
    2
  ],
  "tokenizer_bos_token": [
    "<s>",
    1
  ],
  "eot_token_id": 2,
  "max_length": 4096,
  "task_hashes": {},
  "model_source": "hf",
  "model_name": "Sao10K/Fimbulvetr-11B-v2",
  "model_name_sanitized": "Sao10K__Fimbulvetr-11B-v2",
  "system_instruction": null,
  "system_instruction_sha": null,
  "fewshot_as_multiturn": false,
  "chat_template": null,
  "chat_template_sha": null,
  "start_time": 99227.279509843,
  "end_time": 101532.191916139,
  "total_evaluation_time_seconds": "2304.912406295989"
}