FallenMerick
commited on
Upload folder using huggingface_hub
Browse files- Intel__neural-chat-7b-v3-1/results_2024-06-27T21-55-55.507233.json +177 -0
- KoboldAI__Mistral-7B-Erebus-v3/results_2024-06-28T02-01-18.290687.json +177 -0
- KoboldAI__Mistral-7B-Holodeck-1/results_2024-06-28T01-04-59.368025.json +177 -0
- NousResearch__Hermes-2-Pro-Mistral-7B/results_2024-06-28T00-36-44.931474.json +177 -0
- Open-Orca__Mistral-7B-OpenOrca/results_2024-06-27T21-00-54.306241.json +177 -0
- SanjiWatsuki__Kunoichi-7B/results_2024-06-27T20-34-47.197919.json +177 -0
- Undi95__Toppy-M-7B/results_2024-06-28T02-28-16.478931.json +177 -0
- athirdpath__NSFW_DPO_vmgb-7b/results_2024-06-28T02-55-12.160237.json +177 -0
- jondurbin__airoboros-m-7b-3.1.2/results_2024-06-27T21-27-37.734965.json +177 -0
- jondurbin__cinematika-7b-v0.1/results_2024-06-27T23-16-51.732979.json +177 -0
- migtissera__Synthia-7B-v3.0/results_2024-06-27T22-50-03.654626.json +177 -0
- mlabonne__NeuralBeagle14-7B/results_2024-06-28T00-10-47.687175.json +177 -0
- rwitz__go-bruins/results_2024-06-27T22-21-09.060416.json +177 -0
- senseable__WestLake-7B-v2/results_2024-06-28T01-32-26.319492.json +177 -0
- teknium__OpenHermes-2.5-Mistral-7B/results_2024-06-27T23-43-07.467674.json +177 -0
Intel__neural-chat-7b-v3-1/results_2024-06-27T21-55-55.507233.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6323441545508863,
|
5 |
+
"acc_stderr,none": 0.004811815959388812,
|
6 |
+
"acc_norm,none": 0.7975502887870942,
|
7 |
+
"acc_norm_stderr,none": 0.004010043978333027,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 62.2626522660805,
|
12 |
+
"eqbench_stderr,none": 2.2134366454600554,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=Intel/neural-chat-7b-v3-1,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "c0d379a49c1c0579529d5e6f2e936ddb759552a8",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719523797.1185606,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "Intel/neural-chat-7b-v3-1",
|
168 |
+
"model_name_sanitized": "Intel__neural-chat-7b-v3-1",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 76180.270750278,
|
175 |
+
"end_time": 77745.57190531,
|
176 |
+
"total_evaluation_time_seconds": "1565.301155032008"
|
177 |
+
}
|
KoboldAI__Mistral-7B-Erebus-v3/results_2024-06-28T02-01-18.290687.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.5837482573192591,
|
5 |
+
"acc_stderr,none": 0.0049192891130275095,
|
6 |
+
"acc_norm,none": 0.7665803624775941,
|
7 |
+
"acc_norm_stderr,none": 0.004221424792919153,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 18.19761609584577,
|
12 |
+
"eqbench_stderr,none": 3.474273216617232,
|
13 |
+
"percent_parseable,none": 97.6608187134503,
|
14 |
+
"percent_parseable_stderr,none": 1.1592247905734945,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=KoboldAI/Mistral-7B-Erebus-v3,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "476c2eed031028f2fcfb9b8d0115b83363cec904",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719538494.5098195,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "KoboldAI/Mistral-7B-Erebus-v3",
|
168 |
+
"model_name_sanitized": "KoboldAI__Mistral-7B-Erebus-v3",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 90877.776869387,
|
175 |
+
"end_time": 92468.355496828,
|
176 |
+
"total_evaluation_time_seconds": "1590.578627440991"
|
177 |
+
}
|
KoboldAI__Mistral-7B-Holodeck-1/results_2024-06-28T01-04-59.368025.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6026687910774746,
|
5 |
+
"acc_stderr,none": 0.004883455188908956,
|
6 |
+
"acc_norm,none": 0.7918741286596296,
|
7 |
+
"acc_norm_stderr,none": 0.0040513767194979506,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 2.099910527905425,
|
12 |
+
"eqbench_stderr,none": 2.491702523648299,
|
13 |
+
"percent_parseable,none": 98.24561403508773,
|
14 |
+
"percent_parseable_stderr,none": 1.0069193740062292,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=KoboldAI/Mistral-7B-Holodeck-1,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "76057cc5c1923921162133c81ae7ca0e92755810",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719535119.7065547,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "KoboldAI/Mistral-7B-Holodeck-1",
|
168 |
+
"model_name_sanitized": "KoboldAI__Mistral-7B-Holodeck-1",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 87502.926965946,
|
175 |
+
"end_time": 89089.432844292,
|
176 |
+
"total_evaluation_time_seconds": "1586.5058783459972"
|
177 |
+
}
|
NousResearch__Hermes-2-Pro-Mistral-7B/results_2024-06-28T00-36-44.931474.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6267675761800439,
|
5 |
+
"acc_stderr,none": 0.004826746160830164,
|
6 |
+
"acc_norm,none": 0.8055168293168692,
|
7 |
+
"acc_norm_stderr,none": 0.003949933997955457,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 65.92538496559615,
|
12 |
+
"eqbench_stderr,none": 2.278499695256187,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=NousResearch/Hermes-2-Pro-Mistral-7B,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241994240,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "09317b1d8da639b5d9af77c06aa17cde0f0f91c0",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719533491.7175071,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"</s>",
|
153 |
+
2
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"<|im_end|>",
|
157 |
+
32000
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 32000,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "NousResearch/Hermes-2-Pro-Mistral-7B",
|
168 |
+
"model_name_sanitized": "NousResearch__Hermes-2-Pro-Mistral-7B",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 85874.893829605,
|
175 |
+
"end_time": 87394.996271898,
|
176 |
+
"total_evaluation_time_seconds": "1520.1024422929913"
|
177 |
+
}
|
Open-Orca__Mistral-7B-OpenOrca/results_2024-06-27T21-00-54.306241.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6379207329217288,
|
5 |
+
"acc_stderr,none": 0.004796193584930065,
|
6 |
+
"acc_norm,none": 0.8166699860585541,
|
7 |
+
"acc_norm_stderr,none": 0.0038614605262315377,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 63.978950638437865,
|
12 |
+
"eqbench_stderr,none": 2.3824356593314344,
|
13 |
+
"percent_parseable,none": 99.41520467836257,
|
14 |
+
"percent_parseable_stderr,none": 0.5847953216374284,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=Open-Orca/Mistral-7B-OpenOrca,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241748480,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "4a37328cef00f524d3791b1c0cc559a3cc6af14d",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719520557.5287726,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"<|im_end|>",
|
157 |
+
32000
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 32000,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "Open-Orca/Mistral-7B-OpenOrca",
|
168 |
+
"model_name_sanitized": "Open-Orca__Mistral-7B-OpenOrca",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 72940.705278236,
|
175 |
+
"end_time": 74444.371073833,
|
176 |
+
"total_evaluation_time_seconds": "1503.6657955970004"
|
177 |
+
}
|
SanjiWatsuki__Kunoichi-7B/results_2024-06-27T20-34-47.197919.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6803425612427804,
|
5 |
+
"acc_stderr,none": 0.004653907471785688,
|
6 |
+
"acc_norm,none": 0.8525194184425413,
|
7 |
+
"acc_norm_stderr,none": 0.003538596773704852,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 72.35673723130577,
|
12 |
+
"eqbench_stderr,none": 1.842888264461036,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=SanjiWatsuki/Kunoichi-7B,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "b2c23b9d0036e6e74e5f61de74776e9091956c83",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719519064.691441,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 8192,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "SanjiWatsuki/Kunoichi-7B",
|
168 |
+
"model_name_sanitized": "SanjiWatsuki__Kunoichi-7B",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 71447.838088771,
|
175 |
+
"end_time": 72877.26274353,
|
176 |
+
"total_evaluation_time_seconds": "1429.424654759001"
|
177 |
+
}
|
Undi95__Toppy-M-7B/results_2024-06-28T02-28-16.478931.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6571400119498108,
|
5 |
+
"acc_stderr,none": 0.00473695081061781,
|
6 |
+
"acc_norm,none": 0.8351921927902808,
|
7 |
+
"acc_norm_stderr,none": 0.003702487662126953,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 66.56565114431275,
|
12 |
+
"eqbench_stderr,none": 2.1832557339862837,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=Undi95/Toppy-M-7B,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "5d0c492effbb2e52ea04e5100c6ce02eba48a793",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719540198.0639265,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "Undi95/Toppy-M-7B",
|
168 |
+
"model_name_sanitized": "Undi95__Toppy-M-7B",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 92581.210827571,
|
175 |
+
"end_time": 94086.543624108,
|
176 |
+
"total_evaluation_time_seconds": "1505.3327965369972"
|
177 |
+
}
|
athirdpath__NSFW_DPO_vmgb-7b/results_2024-06-28T02-55-12.160237.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6730730930093607,
|
5 |
+
"acc_stderr,none": 0.0046813160644444095,
|
6 |
+
"acc_norm,none": 0.8536148177653854,
|
7 |
+
"acc_norm_stderr,none": 0.0035276951498235012,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 74.82935321697907,
|
12 |
+
"eqbench_stderr,none": 1.6591997145588517,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=athirdpath/NSFW_DPO_vmgb-7b,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "b667d7810267685cd4f32a8f82044e419c010abe",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719541817.2830012,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "athirdpath/NSFW_DPO_vmgb-7b",
|
168 |
+
"model_name_sanitized": "athirdpath__NSFW_DPO_vmgb-7b",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 94200.513127129,
|
175 |
+
"end_time": 95702.225070561,
|
176 |
+
"total_evaluation_time_seconds": "1501.7119434320048"
|
177 |
+
}
|
jondurbin__airoboros-m-7b-3.1.2/results_2024-06-27T21-27-37.734965.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6262696673969329,
|
5 |
+
"acc_stderr,none": 0.0048280457747349,
|
6 |
+
"acc_norm,none": 0.8133837880900219,
|
7 |
+
"acc_norm_stderr,none": 0.0038880689432920544,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 38.51541437922841,
|
12 |
+
"eqbench_stderr,none": 3.511567923871361,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=jondurbin/airoboros-m-7b-3.1.2,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "e9a7f0271fa442d65bf6be87feeb3f4de2f5760e",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719522153.290284,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "jondurbin/airoboros-m-7b-3.1.2",
|
168 |
+
"model_name_sanitized": "jondurbin__airoboros-m-7b-3.1.2",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 74536.468290869,
|
175 |
+
"end_time": 76047.79978283,
|
176 |
+
"total_evaluation_time_seconds": "1511.3314919609984"
|
177 |
+
}
|
jondurbin__cinematika-7b-v0.1/results_2024-06-27T23-16-51.732979.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6138219478191596,
|
5 |
+
"acc_stderr,none": 0.004858771963468838,
|
6 |
+
"acc_norm,none": 0.8031268671579367,
|
7 |
+
"acc_norm_stderr,none": 0.00396822985262125,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 44.84948931109151,
|
12 |
+
"eqbench_stderr,none": 3.1571076496385277,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=jondurbin/cinematika-7b-v0.1,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241756672,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "6df1846af7de7ab8e2201ad87071ed661e3b0de2",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719528705.1154015,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"[PAD]",
|
153 |
+
32000
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "jondurbin/cinematika-7b-v0.1",
|
168 |
+
"model_name_sanitized": "jondurbin__cinematika-7b-v0.1",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 81088.287076101,
|
175 |
+
"end_time": 82601.797810444,
|
176 |
+
"total_evaluation_time_seconds": "1513.510734342999"
|
177 |
+
}
|
migtissera__Synthia-7B-v3.0/results_2024-06-27T22-50-03.654626.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6188010356502689,
|
5 |
+
"acc_stderr,none": 0.004846886929763468,
|
6 |
+
"acc_norm,none": 0.8173670583549094,
|
7 |
+
"acc_norm_stderr,none": 0.0038557568514416335,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 15.026068685500109,
|
12 |
+
"eqbench_stderr,none": 2.8920476087351132,
|
13 |
+
"percent_parseable,none": 94.73684210526316,
|
14 |
+
"percent_parseable_stderr,none": 1.7126088775157098,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=migtissera/Synthia-7B-v3.0,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "93c2e8b8055b42779f2b68059ebe38af6f2789c4",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719527019.219691,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "migtissera/Synthia-7B-v3.0",
|
168 |
+
"model_name_sanitized": "migtissera__Synthia-7B-v3.0",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 79402.540235241,
|
175 |
+
"end_time": 80993.719447117,
|
176 |
+
"total_evaluation_time_seconds": "1591.1792118759913"
|
177 |
+
}
|
mlabonne__NeuralBeagle14-7B/results_2024-06-28T00-10-47.687175.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.7003584943238399,
|
5 |
+
"acc_stderr,none": 0.004571647137441099,
|
6 |
+
"acc_norm,none": 0.8645688109938259,
|
7 |
+
"acc_norm_stderr,none": 0.003414842236516961,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 74.20803234078544,
|
12 |
+
"eqbench_stderr,none": 1.9057062958788094,
|
13 |
+
"percent_parseable,none": 99.41520467836257,
|
14 |
+
"percent_parseable_stderr,none": 0.5847953216374271,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=mlabonne/NeuralBeagle14-7B,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "1567ad618a0998139654cb355738bb9bc018ca64",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719531860.3285184,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"</s>",
|
153 |
+
2
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "mlabonne/NeuralBeagle14-7B",
|
168 |
+
"model_name_sanitized": "mlabonne__NeuralBeagle14-7B",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 84243.603381348,
|
175 |
+
"end_time": 85837.751968409,
|
176 |
+
"total_evaluation_time_seconds": "1594.1485870609904"
|
177 |
+
}
|
rwitz__go-bruins/results_2024-06-27T22-21-09.060416.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6664011153156741,
|
5 |
+
"acc_stderr,none": 0.0047053471376996584,
|
6 |
+
"acc_norm,none": 0.8492332204740092,
|
7 |
+
"acc_norm_stderr,none": 0.0035709011883580865,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 73.61594324522352,
|
12 |
+
"eqbench_stderr,none": 1.8000447804156592,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=rwitz/go-bruins,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "27b510cc158d83cad4f4df4f5cee65353647e080",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719525369.5356786,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"</s>",
|
153 |
+
2
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "rwitz/go-bruins",
|
168 |
+
"model_name_sanitized": "rwitz__go-bruins",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 77752.802678043,
|
175 |
+
"end_time": 79259.12526582,
|
176 |
+
"total_evaluation_time_seconds": "1506.322587777002"
|
177 |
+
}
|
senseable__WestLake-7B-v2/results_2024-06-28T01-32-26.319492.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.7048396733718383,
|
5 |
+
"acc_stderr,none": 0.0045518262729780865,
|
6 |
+
"acc_norm,none": 0.874228241386178,
|
7 |
+
"acc_norm_stderr,none": 0.0033091427273509244,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 77.87295612615341,
|
12 |
+
"eqbench_stderr,none": 1.577200540645531,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=senseable/WestLake-7B-v2,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "41625004c47628837678859753b94c50c82f3bec",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719536781.997623,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "senseable/WestLake-7B-v2",
|
168 |
+
"model_name_sanitized": "senseable__WestLake-7B-v2",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 89165.24699567,
|
175 |
+
"end_time": 90736.384333217,
|
176 |
+
"total_evaluation_time_seconds": "1571.1373375470139"
|
177 |
+
}
|
teknium__OpenHermes-2.5-Mistral-7B/results_2024-06-27T23-43-07.467674.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6302529376618203,
|
5 |
+
"acc_stderr,none": 0.004817495546789561,
|
6 |
+
"acc_norm,none": 0.8167695678151763,
|
7 |
+
"acc_norm_stderr,none": 0.003860646998897285,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 65.75110483136034,
|
12 |
+
"eqbench_stderr,none": 2.270775919439369,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=teknium/OpenHermes-2.5-Mistral-7B,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241748480,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "24c0bea14d53e6f67f1fbe2eca5bfe7cae389b33",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": null,
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719530289.0024347,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"<|im_end|>",
|
157 |
+
32000
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 32000,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "teknium/OpenHermes-2.5-Mistral-7B",
|
168 |
+
"model_name_sanitized": "teknium__OpenHermes-2.5-Mistral-7B",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 82672.316515428,
|
175 |
+
"end_time": 84177.532482507,
|
176 |
+
"total_evaluation_time_seconds": "1505.2159670789988"
|
177 |
+
}
|