afschowdhury commited on
Commit
c23461f
·
1 Parent(s): 229fa94

update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -60
README.md CHANGED
@@ -1,20 +1,42 @@
1
  ---
2
  pipeline_tag: sentence-similarity
3
  tags:
4
- - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
- - transformers
8
-
9
  ---
10
 
11
- # {semantic_roBERTa}
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
  <!--- Describe your model here -->
16
 
17
- ## Usage (Sentence-Transformers)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
 
@@ -26,16 +48,15 @@ Then you can use the model like this:
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
35
 
 
36
 
37
-
38
- ## Usage (HuggingFace Transformers)
39
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
 
41
  ```python
@@ -51,11 +72,11 @@ def mean_pooling(model_output, attention_mask):
51
 
52
 
53
  # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
55
 
56
  # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
 
60
  # Tokenize sentences
61
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -71,53 +92,11 @@ print("Sentence embeddings:")
71
  print(sentence_embeddings)
72
  ```
73
 
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
-
83
- ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `torch.utils.data.dataloader.DataLoader` of length 15718 with parameters:
89
- ```
90
- {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.MSELoss.MSELoss`
96
-
97
- Parameters of the fit()-Method:
98
- ```
99
- {
100
- "epochs": 3,
101
- "evaluation_steps": 0,
102
- "evaluator": "NoneType",
103
- "max_grad_norm": 1,
104
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
- "optimizer_params": {
106
- "eps": 1e-06,
107
- "lr": 2e-05
108
- },
109
- "scheduler": "WarmupLinear",
110
- "steps_per_epoch": null,
111
- "warmup_steps": 4715,
112
- "weight_decay": 0.01
113
- }
114
- ```
115
-
116
-
117
  ## Full Model Architecture
 
118
  ```
119
  SentenceTransformer(
120
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
121
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
122
  )
123
- ```
 
1
  ---
2
  pipeline_tag: sentence-similarity
3
  tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ - dpr
9
  ---
10
 
11
+ # `semantic_xlmr`
12
 
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like **clustering** or **semantic search**.
14
 
15
  <!--- Describe your model here -->
16
 
17
+ ## Model Details
18
+
19
+ - Model name: semantic_xlmr
20
+ - Model version: 1.0
21
+ - Architecture: Sentence Transformer
22
+ - Language: Multilingual ( fine-tuned for Bengali Language)
23
+
24
+ ## Training
25
+
26
+ The model was fine-tuned using **Multilingual Knowledge Distillation** method. We took `paraphrase-distilroberta-base-v2` as the teacher model and `xlm-roberta-large` as the student model.
27
+
28
+
29
+
30
+ ![image](https://i.ibb.co/8Xrgnfr/sentence-transformer-model.png)
31
+
32
+ ## Intended Use:
33
+
34
+ - **Primary Use Case:** Semantic similarity, clustering, and semantic searches
35
+ - **Potential Use Cases:** Document retrieval, information retrieval, recommendation systems, chatbot systems , FAQ system
36
+
37
+ ## Usage
38
+
39
+ ### Using Sentence-Transformers
40
 
41
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
42
 
 
48
 
49
  ```python
50
  from sentence_transformers import SentenceTransformer
51
+ sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"]
52
 
53
+ model = SentenceTransformer('headlesstech/semantic_xlmr')
54
  embeddings = model.encode(sentences)
55
  print(embeddings)
56
  ```
57
 
58
+ ### Using HuggingFace Transformers
59
 
 
 
60
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
61
 
62
  ```python
 
72
 
73
 
74
  # Sentences we want sentence embeddings for
75
+ sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"]
76
 
77
  # Load model from HuggingFace Hub
78
+ tokenizer = AutoTokenizer.from_pretrained('headlesstech/semantic_xlmr')
79
+ model = AutoModel.from_pretrained('headlesstech/semantic_xlmr')
80
 
81
  # Tokenize sentences
82
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
92
  print(sentence_embeddings)
93
  ```
94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  ## Full Model Architecture
96
+
97
  ```
98
  SentenceTransformer(
99
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
100
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
101
  )
102
+ ```