Commit
·
c23461f
1
Parent(s):
229fa94
update README.md
Browse files
README.md
CHANGED
@@ -1,20 +1,42 @@
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
-
- sentence-transformers
|
5 |
-
- feature-extraction
|
6 |
-
- sentence-similarity
|
7 |
-
- transformers
|
8 |
-
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search
|
14 |
|
15 |
<!--- Describe your model here -->
|
16 |
|
17 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
|
@@ -26,16 +48,15 @@ Then you can use the model like this:
|
|
26 |
|
27 |
```python
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
35 |
|
|
|
36 |
|
37 |
-
|
38 |
-
## Usage (HuggingFace Transformers)
|
39 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
|
41 |
```python
|
@@ -51,11 +72,11 @@ def mean_pooling(model_output, attention_mask):
|
|
51 |
|
52 |
|
53 |
# Sentences we want sentence embeddings for
|
54 |
-
sentences = [
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
58 |
-
model = AutoModel.from_pretrained('
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -71,53 +92,11 @@ print("Sentence embeddings:")
|
|
71 |
print(sentence_embeddings)
|
72 |
```
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
## Evaluation Results
|
77 |
-
|
78 |
-
<!--- Describe how your model was evaluated -->
|
79 |
-
|
80 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
-
|
82 |
-
|
83 |
-
## Training
|
84 |
-
The model was trained with the parameters:
|
85 |
-
|
86 |
-
**DataLoader**:
|
87 |
-
|
88 |
-
`torch.utils.data.dataloader.DataLoader` of length 15718 with parameters:
|
89 |
-
```
|
90 |
-
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
91 |
-
```
|
92 |
-
|
93 |
-
**Loss**:
|
94 |
-
|
95 |
-
`sentence_transformers.losses.MSELoss.MSELoss`
|
96 |
-
|
97 |
-
Parameters of the fit()-Method:
|
98 |
-
```
|
99 |
-
{
|
100 |
-
"epochs": 3,
|
101 |
-
"evaluation_steps": 0,
|
102 |
-
"evaluator": "NoneType",
|
103 |
-
"max_grad_norm": 1,
|
104 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
105 |
-
"optimizer_params": {
|
106 |
-
"eps": 1e-06,
|
107 |
-
"lr": 2e-05
|
108 |
-
},
|
109 |
-
"scheduler": "WarmupLinear",
|
110 |
-
"steps_per_epoch": null,
|
111 |
-
"warmup_steps": 4715,
|
112 |
-
"weight_decay": 0.01
|
113 |
-
}
|
114 |
-
```
|
115 |
-
|
116 |
-
|
117 |
## Full Model Architecture
|
|
|
118 |
```
|
119 |
SentenceTransformer(
|
120 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
121 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
122 |
)
|
123 |
-
```
|
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
- dpr
|
9 |
---
|
10 |
|
11 |
+
# `semantic_xlmr`
|
12 |
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like **clustering** or **semantic search**.
|
14 |
|
15 |
<!--- Describe your model here -->
|
16 |
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
- Model name: semantic_xlmr
|
20 |
+
- Model version: 1.0
|
21 |
+
- Architecture: Sentence Transformer
|
22 |
+
- Language: Multilingual ( fine-tuned for Bengali Language)
|
23 |
+
|
24 |
+
## Training
|
25 |
+
|
26 |
+
The model was fine-tuned using **Multilingual Knowledge Distillation** method. We took `paraphrase-distilroberta-base-v2` as the teacher model and `xlm-roberta-large` as the student model.
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+

|
31 |
+
|
32 |
+
## Intended Use:
|
33 |
+
|
34 |
+
- **Primary Use Case:** Semantic similarity, clustering, and semantic searches
|
35 |
+
- **Potential Use Cases:** Document retrieval, information retrieval, recommendation systems, chatbot systems , FAQ system
|
36 |
+
|
37 |
+
## Usage
|
38 |
+
|
39 |
+
### Using Sentence-Transformers
|
40 |
|
41 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
42 |
|
|
|
48 |
|
49 |
```python
|
50 |
from sentence_transformers import SentenceTransformer
|
51 |
+
sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"]
|
52 |
|
53 |
+
model = SentenceTransformer('headlesstech/semantic_xlmr')
|
54 |
embeddings = model.encode(sentences)
|
55 |
print(embeddings)
|
56 |
```
|
57 |
|
58 |
+
### Using HuggingFace Transformers
|
59 |
|
|
|
|
|
60 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
61 |
|
62 |
```python
|
|
|
72 |
|
73 |
|
74 |
# Sentences we want sentence embeddings for
|
75 |
+
sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"]
|
76 |
|
77 |
# Load model from HuggingFace Hub
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained('headlesstech/semantic_xlmr')
|
79 |
+
model = AutoModel.from_pretrained('headlesstech/semantic_xlmr')
|
80 |
|
81 |
# Tokenize sentences
|
82 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
92 |
print(sentence_embeddings)
|
93 |
```
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
## Full Model Architecture
|
96 |
+
|
97 |
```
|
98 |
SentenceTransformer(
|
99 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
100 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
101 |
)
|
102 |
+
```
|