--- language: en license: mit base_model: mlx-community/Qwen2.5-1.5B-Instruct-4bit tags: - mlx - intent-detection - fine-tuned - knowledge-management - ios library_name: mlx --- # knowledgebase-intent-llm Fine-tuned model for intent detection in a knowledge management iOS app. ## Model Details - **Base Model**: mlx-community/Qwen2.5-1.5B-Instruct-4bit - **Model Type**: intent_detection - **Format**: complete_merged - **Framework**: MLX - **Training Examples**: 5000 - **Training Iterations**: 100 ## Usage ```python from mlx_lm import load, generate # Load the model model, tokenizer = load("hebertgo/knowledgebase-intent-llm") # Generate intent classification prompt = '''You are a helpful AI assistant for a knowledge-management app on an iPhone. Analyze the user's request and respond with JSON in this format: { "action": "Search|Create|Clarify|Conversation", "response": "User-friendly response message", "contentType": "videos|bookmarks|todos", "topic": "extracted topic or null" } User query: find videos about python''' response = generate(model, tokenizer, prompt=prompt, max_tokens=256) print(response) ``` ## iOS Integration This model is designed for use in iOS apps with MLX Swift: ```swift let config = ModelConfiguration( id: "hebertgo/knowledgebase-intent-llm", defaultPrompt: "" ) let model = try await LLMModelFactory.shared.loadContainer( configuration: config ) ``` ## Training Details - **Fine-tuning Method**: LoRA with model fusion - **Export Date**: 2025-06-24T17:12:38.111419 - **Fusion Completed**: True ## Expected Outputs The model generates JSON responses with these action types: - **Search**: Find existing content (videos, bookmarks, todos) - **Create**: Add new content - **Clarify**: Request more information - **Conversation**: General chat responses Content types supported: - videos - bookmarks - todos ## Performance Optimized for Apple Silicon devices with MLX framework for efficient on-device inference.