hectorjelly
commited on
Commit
·
a2e0f8d
1
Parent(s):
ab8569b
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.27 +/- 0.58
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9e36cfcfc165d21f8442341166c17ee58e802806cb76a92f132a64e1227fa09
|
3 |
+
size 107732
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f92079844c0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f920797f690>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1250000,
|
45 |
+
"_total_timesteps": 1250000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1676558002844800764,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAJ03HPm7fPDzVnQs/J03HPm7fPDzVnQs/J03HPm7fPDzVnQs/J03HPm7fPDzVnQs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANg0RvmMFyb558109QMu6PauHAz989pE/l1u1v4XWx75+/Lc/MCiKPyIher9FgEM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAnTcc+bt88PNWdCz9wwxY8gAZVOvI6tzsnTcc+bt88PNWdCz9wwxY8gAZVOvI6tzsnTcc+bt88PNWdCz9wwxY8gAZVOvI6tzsnTcc+bt88PNWdCz9wwxY8gAZVOvI6tzuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.3892605 0.01152788 0.5453771 ]\n [0.3892605 0.01152788 0.5453771 ]\n [0.3892605 0.01152788 0.5453771 ]\n [0.3892605 0.01152788 0.5453771 ]]",
|
60 |
+
"desired_goal": "[[-0.14165196 -0.39261922 0.05418727]\n [ 0.09120798 0.5137889 1.1403346 ]\n [-1.4168576 -0.39030853 1.437393 ]\n [ 1.0793514 -0.97706807 0.190919 ]]",
|
61 |
+
"observation": "[[0.3892605 0.01152788 0.5453771 0.00920187 0.00081263 0.00559174]\n [0.3892605 0.01152788 0.5453771 0.00920187 0.00081263 0.00559174]\n [0.3892605 0.01152788 0.5453771 0.00920187 0.00081263 0.00559174]\n [0.3892605 0.01152788 0.5453771 0.00920187 0.00081263 0.00559174]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhmewPHWx3r34BoM+ItHDPXjFPbtgwBQ+lTcnvRCYMz2S1Sc+QrMRvggudTwm9j47lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.02153374 -0.10873691 0.25591254]\n [ 0.09561373 -0.00289568 0.1452651 ]\n [-0.04082449 0.04384619 0.16390064]\n [-0.14228538 0.01496459 0.00291384]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIV0EMdO1rAMCUhpRSlIwBbJRLMowBdJRHQLGgs9RrJsB1fZQoaAZoCWgPQwh/bf30n1UEwJSGlFKUaBVLMmgWR0CxoGwRK6FudX2UKGgGaAloD0MINIEiFjGs+r+UhpRSlGgVSzJoFkdAsaAbkLhJiHV9lChoBmgJaA9DCOEnDqDf9/y/lIaUUpRoFUsyaBZHQLGfwc45tFd1fZQoaAZoCWgPQwhYA5SGGoUDwJSGlFKUaBVLMmgWR0CxoUf029+PdX2UKGgGaAloD0MIVS5U/rV8/r+UhpRSlGgVSzJoFkdAsaD/0yxiX3V9lChoBmgJaA9DCOdvQiEC7gPAlIaUUpRoFUsyaBZHQLGgrwA2hqV1fZQoaAZoCWgPQwgcfcwHBBoDwJSGlFKUaBVLMmgWR0CxoFTp9qk/dX2UKGgGaAloD0MI/I7hsZ8lCMCUhpRSlGgVSzJoFkdAsaHTs8gZCXV9lChoBmgJaA9DCD547dKGYwHAlIaUUpRoFUsyaBZHQLGhi6Uqx1R1fZQoaAZoCWgPQwixbOaQ1AL4v5SGlFKUaBVLMmgWR0CxoTrbQC0XdX2UKGgGaAloD0MIC3pvDAGA+7+UhpRSlGgVSzJoFkdAsaDhG/etS3V9lChoBmgJaA9DCBPVWwNbBQTAlIaUUpRoFUsyaBZHQLGiZLofSx91fZQoaAZoCWgPQwgOT6+UZUj2v5SGlFKUaBVLMmgWR0CxohyW3Sa3dX2UKGgGaAloD0MIv0nToGge97+UhpRSlGgVSzJoFkdAsaHLwUg0THV9lChoBmgJaA9DCC6Oyk3UkvO/lIaUUpRoFUsyaBZHQLGhcarmyPd1fZQoaAZoCWgPQwjIXYQpyiX7v5SGlFKUaBVLMmgWR0Cxou6Q3gk1dX2UKGgGaAloD0MICDwwgPBhBcCUhpRSlGgVSzJoFkdAsaKmhK15SnV9lChoBmgJaA9DCMe44uKofAHAlIaUUpRoFUsyaBZHQLGiVbcXWOJ1fZQoaAZoCWgPQwgL7Zxmgbb4v5SGlFKUaBVLMmgWR0CxofuzD4xldX2UKGgGaAloD0MIodrgRPTr/L+UhpRSlGgVSzJoFkdAsaN+jCYTkHV9lChoBmgJaA9DCKzFpwAYrwDAlIaUUpRoFUsyaBZHQLGjNmuTzNF1fZQoaAZoCWgPQwhuFi8WhugJwJSGlFKUaBVLMmgWR0CxouW0VrRCdX2UKGgGaAloD0MI1JtR81Vy+b+UhpRSlGgVSzJoFkdAsaKLpY9xInV9lChoBmgJaA9DCKYr2EY8Wfa/lIaUUpRoFUsyaBZHQLGkCRnezld1fZQoaAZoCWgPQwhsCI7LuGn3v5SGlFKUaBVLMmgWR0Cxo8D7EYO2dX2UKGgGaAloD0MIuhRXlX23BcCUhpRSlGgVSzJoFkdAsaNwINVinnV9lChoBmgJaA9DCCDQmbSp+grAlIaUUpRoFUsyaBZHQLGjFiGWUr11fZQoaAZoCWgPQwjggQGED6UAwJSGlFKUaBVLMmgWR0CxpI1/+bVjdX2UKGgGaAloD0MI2GZjJebZAsCUhpRSlGgVSzJoFkdAsaRFWjoIOnV9lChoBmgJaA9DCBbcD3hgYAHAlIaUUpRoFUsyaBZHQLGj9H7P6bh1fZQoaAZoCWgPQwjytPzAVZ79v5SGlFKUaBVLMmgWR0Cxo5pmmLtNdX2UKGgGaAloD0MIQBTMmIJ1/L+UhpRSlGgVSzJoFkdAsaUY1sLv1HV9lChoBmgJaA9DCP4Mb9bgnQLAlIaUUpRoFUsyaBZHQLGk0OUMXrN1fZQoaAZoCWgPQwil+WNam4b5v5SGlFKUaBVLMmgWR0CxpIAhKUV0dX2UKGgGaAloD0MIA7UYPEz7AsCUhpRSlGgVSzJoFkdAsaQmPhhpg3V9lChoBmgJaA9DCA1v1uB91QPAlIaUUpRoFUsyaBZHQLGlpRradtl1fZQoaAZoCWgPQwjZXgt6b8z9v5SGlFKUaBVLMmgWR0CxpVz3225QdX2UKGgGaAloD0MItklFY+0v+L+UhpRSlGgVSzJoFkdAsaUMJAt4A3V9lChoBmgJaA9DCF6+9WG9EQjAlIaUUpRoFUsyaBZHQLGkshDPWx11fZQoaAZoCWgPQwjxDvCkhUsKwJSGlFKUaBVLMmgWR0Cxpi9VrAP/dX2UKGgGaAloD0MIIJc48kAEAMCUhpRSlGgVSzJoFkdAsaXnJtBOYnV9lChoBmgJaA9DCH78pUV90vq/lIaUUpRoFUsyaBZHQLGlllBQemx1fZQoaAZoCWgPQwgcQwBw7Bn9v5SGlFKUaBVLMmgWR0CxpTw5R0lrdX2UKGgGaAloD0MIIJkOnZ73+r+UhpRSlGgVSzJoFkdAsaaxXjlxO3V9lChoBmgJaA9DCDKTqBd8OgDAlIaUUpRoFUsyaBZHQLGmaTkhib51fZQoaAZoCWgPQwgKoYMu4ZD9v5SGlFKUaBVLMmgWR0CxphhpcophdX2UKGgGaAloD0MIE2VvKeeL9r+UhpRSlGgVSzJoFkdAsaW+T4cm0HV9lChoBmgJaA9DCDVDqihepfu/lIaUUpRoFUsyaBZHQLGnMH8TBZZ1fZQoaAZoCWgPQwgcB14td4YDwJSGlFKUaBVLMmgWR0Cxpuhh2GIsdX2UKGgGaAloD0MISS7/If22/7+UhpRSlGgVSzJoFkdAsaaXkuHvdHV9lChoBmgJaA9DCBNE3Qcg1QTAlIaUUpRoFUsyaBZHQLGmPXTVlPJ1fZQoaAZoCWgPQwgnTBjNyjYAwJSGlFKUaBVLMmgWR0Cxp7dnK4hEdX2UKGgGaAloD0MI5Xyx9+IL+b+UhpRSlGgVSzJoFkdAsadvV2A5JnV9lChoBmgJaA9DCB/bMuAshQDAlIaUUpRoFUsyaBZHQLGnHpm29ct1fZQoaAZoCWgPQwjytPzAVX4CwJSGlFKUaBVLMmgWR0CxpsSEL6UJdX2UKGgGaAloD0MITFEujV+4BMCUhpRSlGgVSzJoFkdAsahBKpT/AHV9lChoBmgJaA9DCMY1PpP9M/6/lIaUUpRoFUsyaBZHQLGn+XGOuJV1fZQoaAZoCWgPQwii0R3EzhT5v5SGlFKUaBVLMmgWR0Cxp6kjC53DdX2UKGgGaAloD0MIrAK1GDxM+7+UhpRSlGgVSzJoFkdAsadPcN6PbXV9lChoBmgJaA9DCMb5m1CIQP2/lIaUUpRoFUsyaBZHQLGpJ18stkF1fZQoaAZoCWgPQwj8/WK2ZDUNwJSGlFKUaBVLMmgWR0CxqN+aWom5dX2UKGgGaAloD0MIvVKWIY61BcCUhpRSlGgVSzJoFkdAsaiPHyVfNXV9lChoBmgJaA9DCL7ArFCkuwXAlIaUUpRoFUsyaBZHQLGoNXUH6dl1fZQoaAZoCWgPQwgv+DQnL9ICwJSGlFKUaBVLMmgWR0CxqgwdOqNqdX2UKGgGaAloD0MIdLaA0HrYAsCUhpRSlGgVSzJoFkdAsanESDh99nV9lChoBmgJaA9DCCgtXFZh0wTAlIaUUpRoFUsyaBZHQLGpc+qzZ6F1fZQoaAZoCWgPQwhuGAXB4/sOwJSGlFKUaBVLMmgWR0CxqRoo/iYLdX2UKGgGaAloD0MILa9cb5tp/L+UhpRSlGgVSzJoFkdAsarwoG6f8XV9lChoBmgJaA9DCC5yT1d37ALAlIaUUpRoFUsyaBZHQLGqqhx5s0p1fZQoaAZoCWgPQwhJ88e0Ng39v5SGlFKUaBVLMmgWR0CxqlnhGYrsdX2UKGgGaAloD0MIuw7VlGS9AcCUhpRSlGgVSzJoFkdAsaoAOEug6HV9lChoBmgJaA9DCAuZK4NqgwLAlIaUUpRoFUsyaBZHQLGrzX4j8k51fZQoaAZoCWgPQwh8YTJVMGr/v5SGlFKUaBVLMmgWR0Cxq4WyLQ5WdX2UKGgGaAloD0MIycnErYKYCMCUhpRSlGgVSzJoFkdAsas1VNpM6HV9lChoBmgJaA9DCBnkLsIUpQDAlIaUUpRoFUsyaBZHQLGq256dDpl1fZQoaAZoCWgPQwg9fJkoQooPwJSGlFKUaBVLMmgWR0CxrLqEal1sdX2UKGgGaAloD0MIOq+xS1TvCcCUhpRSlGgVSzJoFkdAsaxyyAxzrHV9lChoBmgJaA9DCO4KfbCMTQjAlIaUUpRoFUsyaBZHQLGsIlqrR0F1fZQoaAZoCWgPQwhBRdWvdL4AwJSGlFKUaBVLMmgWR0Cxq8iojv/jdX2UKGgGaAloD0MILKBQTx8B+b+UhpRSlGgVSzJoFkdAsa2en3ta6nV9lChoBmgJaA9DCPsD5bZ9z/i/lIaUUpRoFUsyaBZHQLGtVu/Dcdp1fZQoaAZoCWgPQwgq5iDoaNX4v5SGlFKUaBVLMmgWR0CxrQaWPcSHdX2UKGgGaAloD0MIaHdIMUCCCMCUhpRSlGgVSzJoFkdAsaytI/Z/TnV9lChoBmgJaA9DCKn4vyMqlALAlIaUUpRoFUsyaBZHQLGueDzRQad1fZQoaAZoCWgPQwhGlPYGX9gAwJSGlFKUaBVLMmgWR0CxrjAmmce9dX2UKGgGaAloD0MIU9DtJY2RBMCUhpRSlGgVSzJoFkdAsa3fXDm8unV9lChoBmgJaA9DCPWeymlPaQXAlIaUUpRoFUsyaBZHQLGthVh1DBx1fZQoaAZoCWgPQwhA3qtWJjwAwJSGlFKUaBVLMmgWR0CxrwOevpyIdX2UKGgGaAloD0MIbJIf8StW/b+UhpRSlGgVSzJoFkdAsa67kFOfunV9lChoBmgJaA9DCIfAkUCDrQLAlIaUUpRoFUsyaBZHQLGuauFYdQx1fZQoaAZoCWgPQwhpc5zbhPv7v5SGlFKUaBVLMmgWR0CxrhEuL740dX2UKGgGaAloD0MIRE5fz9dsA8CUhpRSlGgVSzJoFkdAsa+IFzMibHV9lChoBmgJaA9DCAEZOnZQKQzAlIaUUpRoFUsyaBZHQLGvP+mWMS91fZQoaAZoCWgPQwirXRPSGoP+v5SGlFKUaBVLMmgWR0Cxru8YdhiLdX2UKGgGaAloD0MIrWwf8parB8CUhpRSlGgVSzJoFkdAsa6VBrvb5HV9lChoBmgJaA9DCOKvyRr18APAlIaUUpRoFUsyaBZHQLGwDpOerdZ1fZQoaAZoCWgPQwhj8ZvCSoX+v5SGlFKUaBVLMmgWR0Cxr8Z3Tuv2dX2UKGgGaAloD0MI9wX0wp0L+7+UhpRSlGgVSzJoFkdAsa91nanJk3V9lChoBmgJaA9DCMnjafmBKwPAlIaUUpRoFUsyaBZHQLGvG38n/kx1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 62500,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a7066cdc63148c0543ab8c4224d8b20eeccf4a64581a0684c6456ed2f7a2681
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97953970729d215f2f3532e48edd8f7b748cae41b2837d528d8a32edcb33064f
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f92079844c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f920797f690>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1250000, "_total_timesteps": 1250000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676558002844800764, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAJ03HPm7fPDzVnQs/J03HPm7fPDzVnQs/J03HPm7fPDzVnQs/J03HPm7fPDzVnQs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANg0RvmMFyb558109QMu6PauHAz989pE/l1u1v4XWx75+/Lc/MCiKPyIher9FgEM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAnTcc+bt88PNWdCz9wwxY8gAZVOvI6tzsnTcc+bt88PNWdCz9wwxY8gAZVOvI6tzsnTcc+bt88PNWdCz9wwxY8gAZVOvI6tzsnTcc+bt88PNWdCz9wwxY8gAZVOvI6tzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3892605 0.01152788 0.5453771 ]\n [0.3892605 0.01152788 0.5453771 ]\n [0.3892605 0.01152788 0.5453771 ]\n [0.3892605 0.01152788 0.5453771 ]]", "desired_goal": "[[-0.14165196 -0.39261922 0.05418727]\n [ 0.09120798 0.5137889 1.1403346 ]\n [-1.4168576 -0.39030853 1.437393 ]\n [ 1.0793514 -0.97706807 0.190919 ]]", "observation": "[[0.3892605 0.01152788 0.5453771 0.00920187 0.00081263 0.00559174]\n [0.3892605 0.01152788 0.5453771 0.00920187 0.00081263 0.00559174]\n [0.3892605 0.01152788 0.5453771 0.00920187 0.00081263 0.00559174]\n [0.3892605 0.01152788 0.5453771 0.00920187 0.00081263 0.00559174]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhmewPHWx3r34BoM+ItHDPXjFPbtgwBQ+lTcnvRCYMz2S1Sc+QrMRvggudTwm9j47lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02153374 -0.10873691 0.25591254]\n [ 0.09561373 -0.00289568 0.1452651 ]\n [-0.04082449 0.04384619 0.16390064]\n [-0.14228538 0.01496459 0.00291384]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIV0EMdO1rAMCUhpRSlIwBbJRLMowBdJRHQLGgs9RrJsB1fZQoaAZoCWgPQwh/bf30n1UEwJSGlFKUaBVLMmgWR0CxoGwRK6FudX2UKGgGaAloD0MINIEiFjGs+r+UhpRSlGgVSzJoFkdAsaAbkLhJiHV9lChoBmgJaA9DCOEnDqDf9/y/lIaUUpRoFUsyaBZHQLGfwc45tFd1fZQoaAZoCWgPQwhYA5SGGoUDwJSGlFKUaBVLMmgWR0CxoUf029+PdX2UKGgGaAloD0MIVS5U/rV8/r+UhpRSlGgVSzJoFkdAsaD/0yxiX3V9lChoBmgJaA9DCOdvQiEC7gPAlIaUUpRoFUsyaBZHQLGgrwA2hqV1fZQoaAZoCWgPQwgcfcwHBBoDwJSGlFKUaBVLMmgWR0CxoFTp9qk/dX2UKGgGaAloD0MI/I7hsZ8lCMCUhpRSlGgVSzJoFkdAsaHTs8gZCXV9lChoBmgJaA9DCD547dKGYwHAlIaUUpRoFUsyaBZHQLGhi6Uqx1R1fZQoaAZoCWgPQwixbOaQ1AL4v5SGlFKUaBVLMmgWR0CxoTrbQC0XdX2UKGgGaAloD0MIC3pvDAGA+7+UhpRSlGgVSzJoFkdAsaDhG/etS3V9lChoBmgJaA9DCBPVWwNbBQTAlIaUUpRoFUsyaBZHQLGiZLofSx91fZQoaAZoCWgPQwgOT6+UZUj2v5SGlFKUaBVLMmgWR0CxohyW3Sa3dX2UKGgGaAloD0MIv0nToGge97+UhpRSlGgVSzJoFkdAsaHLwUg0THV9lChoBmgJaA9DCC6Oyk3UkvO/lIaUUpRoFUsyaBZHQLGhcarmyPd1fZQoaAZoCWgPQwjIXYQpyiX7v5SGlFKUaBVLMmgWR0Cxou6Q3gk1dX2UKGgGaAloD0MICDwwgPBhBcCUhpRSlGgVSzJoFkdAsaKmhK15SnV9lChoBmgJaA9DCMe44uKofAHAlIaUUpRoFUsyaBZHQLGiVbcXWOJ1fZQoaAZoCWgPQwgL7Zxmgbb4v5SGlFKUaBVLMmgWR0CxofuzD4xldX2UKGgGaAloD0MIodrgRPTr/L+UhpRSlGgVSzJoFkdAsaN+jCYTkHV9lChoBmgJaA9DCKzFpwAYrwDAlIaUUpRoFUsyaBZHQLGjNmuTzNF1fZQoaAZoCWgPQwhuFi8WhugJwJSGlFKUaBVLMmgWR0CxouW0VrRCdX2UKGgGaAloD0MI1JtR81Vy+b+UhpRSlGgVSzJoFkdAsaKLpY9xInV9lChoBmgJaA9DCKYr2EY8Wfa/lIaUUpRoFUsyaBZHQLGkCRnezld1fZQoaAZoCWgPQwhsCI7LuGn3v5SGlFKUaBVLMmgWR0Cxo8D7EYO2dX2UKGgGaAloD0MIuhRXlX23BcCUhpRSlGgVSzJoFkdAsaNwINVinnV9lChoBmgJaA9DCCDQmbSp+grAlIaUUpRoFUsyaBZHQLGjFiGWUr11fZQoaAZoCWgPQwjggQGED6UAwJSGlFKUaBVLMmgWR0CxpI1/+bVjdX2UKGgGaAloD0MI2GZjJebZAsCUhpRSlGgVSzJoFkdAsaRFWjoIOnV9lChoBmgJaA9DCBbcD3hgYAHAlIaUUpRoFUsyaBZHQLGj9H7P6bh1fZQoaAZoCWgPQwjytPzAVZ79v5SGlFKUaBVLMmgWR0Cxo5pmmLtNdX2UKGgGaAloD0MIQBTMmIJ1/L+UhpRSlGgVSzJoFkdAsaUY1sLv1HV9lChoBmgJaA9DCP4Mb9bgnQLAlIaUUpRoFUsyaBZHQLGk0OUMXrN1fZQoaAZoCWgPQwil+WNam4b5v5SGlFKUaBVLMmgWR0CxpIAhKUV0dX2UKGgGaAloD0MIA7UYPEz7AsCUhpRSlGgVSzJoFkdAsaQmPhhpg3V9lChoBmgJaA9DCA1v1uB91QPAlIaUUpRoFUsyaBZHQLGlpRradtl1fZQoaAZoCWgPQwjZXgt6b8z9v5SGlFKUaBVLMmgWR0CxpVz3225QdX2UKGgGaAloD0MItklFY+0v+L+UhpRSlGgVSzJoFkdAsaUMJAt4A3V9lChoBmgJaA9DCF6+9WG9EQjAlIaUUpRoFUsyaBZHQLGkshDPWx11fZQoaAZoCWgPQwjxDvCkhUsKwJSGlFKUaBVLMmgWR0Cxpi9VrAP/dX2UKGgGaAloD0MIIJc48kAEAMCUhpRSlGgVSzJoFkdAsaXnJtBOYnV9lChoBmgJaA9DCH78pUV90vq/lIaUUpRoFUsyaBZHQLGlllBQemx1fZQoaAZoCWgPQwgcQwBw7Bn9v5SGlFKUaBVLMmgWR0CxpTw5R0lrdX2UKGgGaAloD0MIIJkOnZ73+r+UhpRSlGgVSzJoFkdAsaaxXjlxO3V9lChoBmgJaA9DCDKTqBd8OgDAlIaUUpRoFUsyaBZHQLGmaTkhib51fZQoaAZoCWgPQwgKoYMu4ZD9v5SGlFKUaBVLMmgWR0CxphhpcophdX2UKGgGaAloD0MIE2VvKeeL9r+UhpRSlGgVSzJoFkdAsaW+T4cm0HV9lChoBmgJaA9DCDVDqihepfu/lIaUUpRoFUsyaBZHQLGnMH8TBZZ1fZQoaAZoCWgPQwgcB14td4YDwJSGlFKUaBVLMmgWR0Cxpuhh2GIsdX2UKGgGaAloD0MISS7/If22/7+UhpRSlGgVSzJoFkdAsaaXkuHvdHV9lChoBmgJaA9DCBNE3Qcg1QTAlIaUUpRoFUsyaBZHQLGmPXTVlPJ1fZQoaAZoCWgPQwgnTBjNyjYAwJSGlFKUaBVLMmgWR0Cxp7dnK4hEdX2UKGgGaAloD0MI5Xyx9+IL+b+UhpRSlGgVSzJoFkdAsadvV2A5JnV9lChoBmgJaA9DCB/bMuAshQDAlIaUUpRoFUsyaBZHQLGnHpm29ct1fZQoaAZoCWgPQwjytPzAVX4CwJSGlFKUaBVLMmgWR0CxpsSEL6UJdX2UKGgGaAloD0MITFEujV+4BMCUhpRSlGgVSzJoFkdAsahBKpT/AHV9lChoBmgJaA9DCMY1PpP9M/6/lIaUUpRoFUsyaBZHQLGn+XGOuJV1fZQoaAZoCWgPQwii0R3EzhT5v5SGlFKUaBVLMmgWR0Cxp6kjC53DdX2UKGgGaAloD0MIrAK1GDxM+7+UhpRSlGgVSzJoFkdAsadPcN6PbXV9lChoBmgJaA9DCMb5m1CIQP2/lIaUUpRoFUsyaBZHQLGpJ18stkF1fZQoaAZoCWgPQwj8/WK2ZDUNwJSGlFKUaBVLMmgWR0CxqN+aWom5dX2UKGgGaAloD0MIvVKWIY61BcCUhpRSlGgVSzJoFkdAsaiPHyVfNXV9lChoBmgJaA9DCL7ArFCkuwXAlIaUUpRoFUsyaBZHQLGoNXUH6dl1fZQoaAZoCWgPQwgv+DQnL9ICwJSGlFKUaBVLMmgWR0CxqgwdOqNqdX2UKGgGaAloD0MIdLaA0HrYAsCUhpRSlGgVSzJoFkdAsanESDh99nV9lChoBmgJaA9DCCgtXFZh0wTAlIaUUpRoFUsyaBZHQLGpc+qzZ6F1fZQoaAZoCWgPQwhuGAXB4/sOwJSGlFKUaBVLMmgWR0CxqRoo/iYLdX2UKGgGaAloD0MILa9cb5tp/L+UhpRSlGgVSzJoFkdAsarwoG6f8XV9lChoBmgJaA9DCC5yT1d37ALAlIaUUpRoFUsyaBZHQLGqqhx5s0p1fZQoaAZoCWgPQwhJ88e0Ng39v5SGlFKUaBVLMmgWR0CxqlnhGYrsdX2UKGgGaAloD0MIuw7VlGS9AcCUhpRSlGgVSzJoFkdAsaoAOEug6HV9lChoBmgJaA9DCAuZK4NqgwLAlIaUUpRoFUsyaBZHQLGrzX4j8k51fZQoaAZoCWgPQwh8YTJVMGr/v5SGlFKUaBVLMmgWR0Cxq4WyLQ5WdX2UKGgGaAloD0MIycnErYKYCMCUhpRSlGgVSzJoFkdAsas1VNpM6HV9lChoBmgJaA9DCBnkLsIUpQDAlIaUUpRoFUsyaBZHQLGq256dDpl1fZQoaAZoCWgPQwg9fJkoQooPwJSGlFKUaBVLMmgWR0CxrLqEal1sdX2UKGgGaAloD0MIOq+xS1TvCcCUhpRSlGgVSzJoFkdAsaxyyAxzrHV9lChoBmgJaA9DCO4KfbCMTQjAlIaUUpRoFUsyaBZHQLGsIlqrR0F1fZQoaAZoCWgPQwhBRdWvdL4AwJSGlFKUaBVLMmgWR0Cxq8iojv/jdX2UKGgGaAloD0MILKBQTx8B+b+UhpRSlGgVSzJoFkdAsa2en3ta6nV9lChoBmgJaA9DCPsD5bZ9z/i/lIaUUpRoFUsyaBZHQLGtVu/Dcdp1fZQoaAZoCWgPQwgq5iDoaNX4v5SGlFKUaBVLMmgWR0CxrQaWPcSHdX2UKGgGaAloD0MIaHdIMUCCCMCUhpRSlGgVSzJoFkdAsaytI/Z/TnV9lChoBmgJaA9DCKn4vyMqlALAlIaUUpRoFUsyaBZHQLGueDzRQad1fZQoaAZoCWgPQwhGlPYGX9gAwJSGlFKUaBVLMmgWR0CxrjAmmce9dX2UKGgGaAloD0MIU9DtJY2RBMCUhpRSlGgVSzJoFkdAsa3fXDm8unV9lChoBmgJaA9DCPWeymlPaQXAlIaUUpRoFUsyaBZHQLGthVh1DBx1fZQoaAZoCWgPQwhA3qtWJjwAwJSGlFKUaBVLMmgWR0CxrwOevpyIdX2UKGgGaAloD0MIbJIf8StW/b+UhpRSlGgVSzJoFkdAsa67kFOfunV9lChoBmgJaA9DCIfAkUCDrQLAlIaUUpRoFUsyaBZHQLGuauFYdQx1fZQoaAZoCWgPQwhpc5zbhPv7v5SGlFKUaBVLMmgWR0CxrhEuL740dX2UKGgGaAloD0MIRE5fz9dsA8CUhpRSlGgVSzJoFkdAsa+IFzMibHV9lChoBmgJaA9DCAEZOnZQKQzAlIaUUpRoFUsyaBZHQLGvP+mWMS91fZQoaAZoCWgPQwirXRPSGoP+v5SGlFKUaBVLMmgWR0Cxru8YdhiLdX2UKGgGaAloD0MIrWwf8parB8CUhpRSlGgVSzJoFkdAsa6VBrvb5HV9lChoBmgJaA9DCOKvyRr18APAlIaUUpRoFUsyaBZHQLGwDpOerdZ1fZQoaAZoCWgPQwhj8ZvCSoX+v5SGlFKUaBVLMmgWR0Cxr8Z3Tuv2dX2UKGgGaAloD0MI9wX0wp0L+7+UhpRSlGgVSzJoFkdAsa91nanJk3V9lChoBmgJaA9DCMnjafmBKwPAlIaUUpRoFUsyaBZHQLGvG38n/kx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (792 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.2653275520075113, "std_reward": 0.5751697070131727, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T15:50:35.342771"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa30379ff5d41548c861fd7ec0a669b12fca7320dd6639f6a20d3241ba6ffe8a
|
3 |
+
size 3056
|