heidragon3045 commited on
Commit
0088d9d
·
1 Parent(s): 64cc5b9

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1578.18 +/- 311.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:948526cf9fbea32530dd04702e5f74c0ac34ebee8fb38afe9f60d18a1d923ddd
3
+ size 129264
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9452e59160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9452e591f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9452e59280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9452e59310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9452e593a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9452e59430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9452e594c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9452e59550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9452e595e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9452e59670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9452e59700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9452e59790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f9452e57940>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680860659927563035,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALdsHD/LP7++sfD1Pg7A4z7hKhjAZf8WP2XqVL+YgEG/7HtXP6Mtbb5C/Ms+swt9vJ1cBL4uihrAJmRAP6xcCTxueaW/kmDDv3O6TT6Id4E/zyhZv+cTBz5XEqS/XdwvvAgZhj85TSI/2X8DP4BmVr/p5IBARYZJvri6+z4vCPC/J80Qvh9aTT3Lorw+r7SFP3Ztxr8uCAi8SPBEwMdvWrxjABw/kFWJOy+OeUBbBag8UXdhv2vvXLsbWmRAkmGePBogxD+B1ig824YtwF0dbbzoW3S/SeXJv/wv+b+AZla/4hQGP+ffpL9+1yw9tXdhP/LOsr9P2A/A/uuhPw0iQb9kuC8/DOfDPmQJdD4OpUfAujItPyKNrj//ICu/5SePP6q60T2WjeY/Hz6BP+BNbTyunK0/Bv8QQCf1JT9boCBA6Ft0vzlNIj/ZfwM/gGZWv2BGPD8EWIO/lZtyPnQv3Tz+kDu+yxJzvx4X6L4gD4O/7qD8vkI8nL9aUo+/QZV6PoZKg77s14y9ZGO+Pq72Xr9Gj6Y/tpeKPFYJIDwB9c6+MkSsP7koFcDnDT8/Og4RQOhbdL85TSI//C/5v4BmVr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADdTaG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsE+BPQAAAADsh/i/AAAAADP4aTwAAAAAm1HtPwAAAAAPCuW9AAAAAKcz5T8AAAAAS8ZVPQAAAACK7PG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgjANNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBtZsz0AAAAATrjevwAAAABM0QM+AAAAAHCZ7T8AAAAA9J6GPQAAAABgQ/s/AAAAAKjxkTwAAAAALRXdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnTajYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDX7fS9AAAAAF2s9b8AAAAA3WEVPQAAAABI7+8/AAAAAEpk8T0AAAAAMzjdPwAAAAB69uE9AAAAAJcK3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhPYw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKILvPQAAAADOH+u/AAAAANz2Dz4AAAAACtDqPwAAAACIv389AAAAAExd4j8AAAAAuDXIvQAAAABWqQDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJvcVtj0+TyMAWyUTegDjAF0lEdAtDFDB68g6nV9lChoBkdAniBeoUBXCGgHTegDaAhHQLQyMZEDyOJ1fZQoaAZHQJeLfD+BH09oB03oA2gIR0C0N80A5q/NdX2UKGgGR0CYn1AKv3ajaAdN6ANoCEdAtDgq89Oh03V9lChoBkdAmRs5byH2y2gHTegDaAhHQLQ4nhLGrCF1fZQoaAZHQJZ/7m8ujAVoB03oA2gIR0C0OURZQpF1dX2UKGgGR0Ccl7L+PzWgaAdN6ANoCEdAtD4nt/nW8XV9lChoBkdAmp9Ooo/iYWgHTegDaAhHQLQ+oBEKE391fZQoaAZHQJrcNnqVyFRoB03oA2gIR0C0PzHhCMP0dX2UKGgGR0CX2k9KEnLJaAdN6ANoCEdAtEAJjMFEA3V9lChoBkdAnWUbmp2lmGgHTegDaAhHQLRFwTnaFmF1fZQoaAZHQJgD9uAI6bRoB03oA2gIR0C0RiBBu4wzdX2UKGgGR0CX6ZicG1QZaAdN6ANoCEdAtEaGQFLWZ3V9lChoBkdAnZyXueBg/mgHTegDaAhHQLRHHofCAMF1fZQoaAZHQJkIZsfq5b1oB03oA2gIR0C0S7ZW/8EWdX2UKGgGR0CEWxCBwuM/aAdN6ANoCEdAtEwM0/GEPHV9lChoBkdAlsPEt/WlM2gHTegDaAhHQLRMdJpFkQR1fZQoaAZHQJRI7fgrH2hoB03oA2gIR0C0TSK8QI2PdX2UKGgGR0CZ03gJ1JUYaAdN6ANoCEdAtFM43Kji43V9lChoBkdAmXURGYrrgWgHTegDaAhHQLRTkBDXvph1fZQoaAZHQJjmAhxHXmNoB03oA2gIR0C0U/chHLA6dX2UKGgGR0CWc7j2SMcZaAdN6ANoCEdAtFSMbedkKHV9lChoBkdAmrAqYNRWLmgHTegDaAhHQLRZG9WIXTF1fZQoaAZHQJdUUcLjPv9oB03oA2gIR0C0WXFtO2y+dX2UKGgGR0CbHKpjMFEBaAdN6ANoCEdAtFnZz0Yj0XV9lChoBkdAmPFkRradtmgHTegDaAhHQLRacfDDTBt1fZQoaAZHQJfaxIxxkupoB03oA2gIR0C0YLldTo+wdX2UKGgGR0CFTJtpEhJRaAdN6ANoCEdAtGEPlIVdonV9lChoBkdAjxbVdPci4mgHTegDaAhHQLRheD1XeWR1fZQoaAZHQJuUz6KtPpJoB03oA2gIR0C0Yg5ksjFAdX2UKGgGR0Caoov3rUsnaAdN6ANoCEdAtGalSUC7snV9lChoBkdAnOYnaN+9amgHTegDaAhHQLRm+uJk5IZ1fZQoaAZHQJn8n/5tWMloB03oA2gIR0C0Z2K+vhZRdX2UKGgGR0Cab7BRhttRaAdN6ANoCEdAtGf40GeMAHV9lChoBkdAmDYShFmWdGgHTegDaAhHQLRtgyhBZ6l1fZQoaAZHQJlekenyd4FoB03oA2gIR0C0bgm3fAKwdX2UKGgGR0CLSdMB6rvLaAdN6ANoCEdAtG6rQ/oq1HV9lChoBkdAm50iosI3SGgHTegDaAhHQLRvhQJXyRV1fZQoaAZHQJldKZRbbDdoB03oA2gIR0C0dDHdfsu4dX2UKGgGR0CcD9Jlar3kaAdN6ANoCEdAtHSJVYISlHV9lChoBkdAmPpduLrHEWgHTegDaAhHQLR08IO6NER1fZQoaAZHQJuQnfj0cwRoB03OA2gIR0C0dWDGPxQSdX2UKGgGR0Cbk8tnwob5aAdN6ANoCEdAtHpCPNmlInV9lChoBkdAmkYvUSZjQWgHTegDaAhHQLR6vNBnjAB1fZQoaAZHQJabW6ClJpZoB03oA2gIR0C0e05aFEiMdX2UKGgGR0CdJs4X40uUaAdN6ANoCEdAtHv7B+F10XV9lChoBkdAnhCxHG0eEWgHTegDaAhHQLSBxaC+UQl1fZQoaAZHQJiOiarmyPdoB03oA2gIR0C0giL74zrNdX2UKGgGR0CWn8ENvwVkaAdN6ANoCEdAtIKQo0ALiXV9lChoBkdAmpDNbPhQ32gHTegDaAhHQLSDBizsyBV1fZQoaAZHQJfWJy2hIvtoB03oA2gIR0C0h/JrULDydX2UKGgGR0Cbh9/nW8RMaAdN6ANoCEdAtIhG/vfCRHV9lChoBkdAnOATBRAKOWgHTegDaAhHQLSI0GKAJ9l1fZQoaAZHQJwlXjKgZjxoB03oA2gIR0C0iXLbxmTUdX2UKGgGR0CCCtBSk0rLaAdN6ANoCEdAtI/z5ckdFXV9lChoBkdAd0IRIjGDMGgHTegDaAhHQLSQUhN/OMV1fZQoaAZHQICjgQL/jsFoB03oA2gIR0C0kML/XGwSdX2UKGgGR0CcHdxyGSIQaAdN6ANoCEdAtJE6l1r6+HV9lChoBkdAlc1/Z/Tb4GgHTegDaAhHQLSV1i5d4V11fZQoaAZHQJuNPxG2CuloB03oA2gIR0C0livECNjtdX2UKGgGR0CRwvQ9RrJsaAdN6ANoCEdAtJaQ9zOopHV9lChoBkdAm+4JOBUaQ2gHTegDaAhHQLSXAOjZcs11fZQoaAZHQJwzTGACnxdoB03oA2gIR0C0nWTjzZpSdX2UKGgGR0Cb4Qmu1WsBaAdN6ANoCEdAtJ22UpuuR3V9lChoBkdAnTKxe9i+c2gHTegDaAhHQLSeF4BFNL11fZQoaAZHQJreqdCmdiFoB03oA2gIR0C0noZRfnfVdX2UKGgGR0Cb034A0bcXaAdN6ANoCEdAtKMqg+Qlr3V9lChoBkdAmvG3kkrwv2gHTegDaAhHQLSjgKraM751fZQoaAZHQJtbBBQemvZoB03oA2gIR0C0o+XXVbzLdX2UKGgGR0CcwbTM7lq8aAdN6ANoCEdAtKRWNZNfxHV9lChoBkdAlJv9LDhtL2gHTekCaAhHQLSoLhNM4951fZQoaAZHQJxiqWjXWe9oB03oA2gIR0C0qwvxUedTdX2UKGgGR0Ca1XHsC1Z1aAdN6ANoCEdAtKuaf6Ggz3V9lChoBkdAnD/AiJO32GgHTegDaAhHQLSsDhky1u11fZQoaAZHQJqHqcwxnFpoB03oA2gIR0C0r1cF+uvEdX2UKGgGR0Ca6AkJ8fFKaAdN6ANoCEdAtLEjZ+QU6HV9lChoBkdAmJOQ8KXv6WgHTegDaAhHQLSxiCtRvWJ1fZQoaAZHQJw0q3trsSloB03oA2gIR0C0sfxmK64EdX2UKGgGR0Ca9S50bLlnaAdN6ANoCEdAtLUutDD0lXV9lChoBkdAmi41V94NZ2gHTegDaAhHQLS3yxn3+Mt1fZQoaAZHQIcCk0P6KtRoB03oA2gIR0C0uG0iILw4dX2UKGgGR0CUjN2c8TzvaAdN6ANoCEdAtLkdRoAXEnV9lChoBkdAmwiUbYK6WmgHTegDaAhHQLS80j8k2P11fZQoaAZHQJfNBdfLLZBoB03oA2gIR0C0vriBTXJ6dX2UKGgGR0CbZrBLf1pTaAdN6ANoCEdAtL8eE384xXV9lChoBkdAmXdk70WdmWgHTegDaAhHQLS/jB3Roh91fZQoaAZHQJumueoUBXFoB03oA2gIR0C0wrUxASnMdX2UKGgGR0CbtxnkT6BRaAdN6ANoCEdAtMSKlyimEXV9lChoBkdAljSO938n/mgHTegDaAhHQLTFHAfMfRx1fZQoaAZHQJxE0Si/O+toB03oA2gIR0C0xbs7IT4+dX2UKGgGR0Cb12o/zJ6qaAdN6ANoCEdAtMo5gqmTDHV9lChoBkdAmpRhb8m8d2gHTegDaAhHQLTMF2GZeAx1fZQoaAZHQJxlgxO+IuZoB03oA2gIR0C0zH/vWpZPdX2UKGgGR0CaR0RJVbRnaAdN6ANoCEdAtMztK02LpHV9lChoBkdAnEHJ79hqkGgHTegDaAhHQLTQHQcxTKl1fZQoaAZHQJvhTR8c+7loB03oA2gIR0C00ezTz/ZNdX2UKGgGR0CU7AiyY5T7aAdN6ANoCEdAtNJWG5+Yt3V9lChoBkdAmhIHcxj8UGgHTegDaAhHQLTSxGHpKSR1fZQoaAZHQJvGImdAgPpoB03oA2gIR0C01z6cNH6NdX2UKGgGR0CeHK/LkjoqaAdN6ANoCEdAtNmFbFCLM3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 97980,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6791cffc33f791bae2e5b4268c40cbcdf5e5d08f51c2cba4bbca45221f5bb8d
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f0ecc45efc6f5ceb28d5fb08d4dc2e6867d8fefb21dc1dfecd69176549ce6ad
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9452e59160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9452e591f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9452e59280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9452e59310>", "_build": "<function ActorCriticPolicy._build at 0x7f9452e593a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9452e59430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9452e594c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9452e59550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9452e595e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9452e59670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9452e59700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9452e59790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9452e57940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680860659927563035, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALdsHD/LP7++sfD1Pg7A4z7hKhjAZf8WP2XqVL+YgEG/7HtXP6Mtbb5C/Ms+swt9vJ1cBL4uihrAJmRAP6xcCTxueaW/kmDDv3O6TT6Id4E/zyhZv+cTBz5XEqS/XdwvvAgZhj85TSI/2X8DP4BmVr/p5IBARYZJvri6+z4vCPC/J80Qvh9aTT3Lorw+r7SFP3Ztxr8uCAi8SPBEwMdvWrxjABw/kFWJOy+OeUBbBag8UXdhv2vvXLsbWmRAkmGePBogxD+B1ig824YtwF0dbbzoW3S/SeXJv/wv+b+AZla/4hQGP+ffpL9+1yw9tXdhP/LOsr9P2A/A/uuhPw0iQb9kuC8/DOfDPmQJdD4OpUfAujItPyKNrj//ICu/5SePP6q60T2WjeY/Hz6BP+BNbTyunK0/Bv8QQCf1JT9boCBA6Ft0vzlNIj/ZfwM/gGZWv2BGPD8EWIO/lZtyPnQv3Tz+kDu+yxJzvx4X6L4gD4O/7qD8vkI8nL9aUo+/QZV6PoZKg77s14y9ZGO+Pq72Xr9Gj6Y/tpeKPFYJIDwB9c6+MkSsP7koFcDnDT8/Og4RQOhbdL85TSI//C/5v4BmVr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADdTaG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsE+BPQAAAADsh/i/AAAAADP4aTwAAAAAm1HtPwAAAAAPCuW9AAAAAKcz5T8AAAAAS8ZVPQAAAACK7PG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgjANNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBtZsz0AAAAATrjevwAAAABM0QM+AAAAAHCZ7T8AAAAA9J6GPQAAAABgQ/s/AAAAAKjxkTwAAAAALRXdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnTajYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDX7fS9AAAAAF2s9b8AAAAA3WEVPQAAAABI7+8/AAAAAEpk8T0AAAAAMzjdPwAAAAB69uE9AAAAAJcK3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhPYw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKILvPQAAAADOH+u/AAAAANz2Dz4AAAAACtDqPwAAAACIv389AAAAAExd4j8AAAAAuDXIvQAAAABWqQDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJvcVtj0+TyMAWyUTegDjAF0lEdAtDFDB68g6nV9lChoBkdAniBeoUBXCGgHTegDaAhHQLQyMZEDyOJ1fZQoaAZHQJeLfD+BH09oB03oA2gIR0C0N80A5q/NdX2UKGgGR0CYn1AKv3ajaAdN6ANoCEdAtDgq89Oh03V9lChoBkdAmRs5byH2y2gHTegDaAhHQLQ4nhLGrCF1fZQoaAZHQJZ/7m8ujAVoB03oA2gIR0C0OURZQpF1dX2UKGgGR0Ccl7L+PzWgaAdN6ANoCEdAtD4nt/nW8XV9lChoBkdAmp9Ooo/iYWgHTegDaAhHQLQ+oBEKE391fZQoaAZHQJrcNnqVyFRoB03oA2gIR0C0PzHhCMP0dX2UKGgGR0CX2k9KEnLJaAdN6ANoCEdAtEAJjMFEA3V9lChoBkdAnWUbmp2lmGgHTegDaAhHQLRFwTnaFmF1fZQoaAZHQJgD9uAI6bRoB03oA2gIR0C0RiBBu4wzdX2UKGgGR0CX6ZicG1QZaAdN6ANoCEdAtEaGQFLWZ3V9lChoBkdAnZyXueBg/mgHTegDaAhHQLRHHofCAMF1fZQoaAZHQJkIZsfq5b1oB03oA2gIR0C0S7ZW/8EWdX2UKGgGR0CEWxCBwuM/aAdN6ANoCEdAtEwM0/GEPHV9lChoBkdAlsPEt/WlM2gHTegDaAhHQLRMdJpFkQR1fZQoaAZHQJRI7fgrH2hoB03oA2gIR0C0TSK8QI2PdX2UKGgGR0CZ03gJ1JUYaAdN6ANoCEdAtFM43Kji43V9lChoBkdAmXURGYrrgWgHTegDaAhHQLRTkBDXvph1fZQoaAZHQJjmAhxHXmNoB03oA2gIR0C0U/chHLA6dX2UKGgGR0CWc7j2SMcZaAdN6ANoCEdAtFSMbedkKHV9lChoBkdAmrAqYNRWLmgHTegDaAhHQLRZG9WIXTF1fZQoaAZHQJdUUcLjPv9oB03oA2gIR0C0WXFtO2y+dX2UKGgGR0CbHKpjMFEBaAdN6ANoCEdAtFnZz0Yj0XV9lChoBkdAmPFkRradtmgHTegDaAhHQLRacfDDTBt1fZQoaAZHQJfaxIxxkupoB03oA2gIR0C0YLldTo+wdX2UKGgGR0CFTJtpEhJRaAdN6ANoCEdAtGEPlIVdonV9lChoBkdAjxbVdPci4mgHTegDaAhHQLRheD1XeWR1fZQoaAZHQJuUz6KtPpJoB03oA2gIR0C0Yg5ksjFAdX2UKGgGR0Caoov3rUsnaAdN6ANoCEdAtGalSUC7snV9lChoBkdAnOYnaN+9amgHTegDaAhHQLRm+uJk5IZ1fZQoaAZHQJn8n/5tWMloB03oA2gIR0C0Z2K+vhZRdX2UKGgGR0Cab7BRhttRaAdN6ANoCEdAtGf40GeMAHV9lChoBkdAmDYShFmWdGgHTegDaAhHQLRtgyhBZ6l1fZQoaAZHQJlekenyd4FoB03oA2gIR0C0bgm3fAKwdX2UKGgGR0CLSdMB6rvLaAdN6ANoCEdAtG6rQ/oq1HV9lChoBkdAm50iosI3SGgHTegDaAhHQLRvhQJXyRV1fZQoaAZHQJldKZRbbDdoB03oA2gIR0C0dDHdfsu4dX2UKGgGR0CcD9Jlar3kaAdN6ANoCEdAtHSJVYISlHV9lChoBkdAmPpduLrHEWgHTegDaAhHQLR08IO6NER1fZQoaAZHQJuQnfj0cwRoB03OA2gIR0C0dWDGPxQSdX2UKGgGR0Cbk8tnwob5aAdN6ANoCEdAtHpCPNmlInV9lChoBkdAmkYvUSZjQWgHTegDaAhHQLR6vNBnjAB1fZQoaAZHQJabW6ClJpZoB03oA2gIR0C0e05aFEiMdX2UKGgGR0CdJs4X40uUaAdN6ANoCEdAtHv7B+F10XV9lChoBkdAnhCxHG0eEWgHTegDaAhHQLSBxaC+UQl1fZQoaAZHQJiOiarmyPdoB03oA2gIR0C0giL74zrNdX2UKGgGR0CWn8ENvwVkaAdN6ANoCEdAtIKQo0ALiXV9lChoBkdAmpDNbPhQ32gHTegDaAhHQLSDBizsyBV1fZQoaAZHQJfWJy2hIvtoB03oA2gIR0C0h/JrULDydX2UKGgGR0Cbh9/nW8RMaAdN6ANoCEdAtIhG/vfCRHV9lChoBkdAnOATBRAKOWgHTegDaAhHQLSI0GKAJ9l1fZQoaAZHQJwlXjKgZjxoB03oA2gIR0C0iXLbxmTUdX2UKGgGR0CCCtBSk0rLaAdN6ANoCEdAtI/z5ckdFXV9lChoBkdAd0IRIjGDMGgHTegDaAhHQLSQUhN/OMV1fZQoaAZHQICjgQL/jsFoB03oA2gIR0C0kML/XGwSdX2UKGgGR0CcHdxyGSIQaAdN6ANoCEdAtJE6l1r6+HV9lChoBkdAlc1/Z/Tb4GgHTegDaAhHQLSV1i5d4V11fZQoaAZHQJuNPxG2CuloB03oA2gIR0C0livECNjtdX2UKGgGR0CRwvQ9RrJsaAdN6ANoCEdAtJaQ9zOopHV9lChoBkdAm+4JOBUaQ2gHTegDaAhHQLSXAOjZcs11fZQoaAZHQJwzTGACnxdoB03oA2gIR0C0nWTjzZpSdX2UKGgGR0Cb4Qmu1WsBaAdN6ANoCEdAtJ22UpuuR3V9lChoBkdAnTKxe9i+c2gHTegDaAhHQLSeF4BFNL11fZQoaAZHQJreqdCmdiFoB03oA2gIR0C0noZRfnfVdX2UKGgGR0Cb034A0bcXaAdN6ANoCEdAtKMqg+Qlr3V9lChoBkdAmvG3kkrwv2gHTegDaAhHQLSjgKraM751fZQoaAZHQJtbBBQemvZoB03oA2gIR0C0o+XXVbzLdX2UKGgGR0CcwbTM7lq8aAdN6ANoCEdAtKRWNZNfxHV9lChoBkdAlJv9LDhtL2gHTekCaAhHQLSoLhNM4951fZQoaAZHQJxiqWjXWe9oB03oA2gIR0C0qwvxUedTdX2UKGgGR0Ca1XHsC1Z1aAdN6ANoCEdAtKuaf6Ggz3V9lChoBkdAnD/AiJO32GgHTegDaAhHQLSsDhky1u11fZQoaAZHQJqHqcwxnFpoB03oA2gIR0C0r1cF+uvEdX2UKGgGR0Ca6AkJ8fFKaAdN6ANoCEdAtLEjZ+QU6HV9lChoBkdAmJOQ8KXv6WgHTegDaAhHQLSxiCtRvWJ1fZQoaAZHQJw0q3trsSloB03oA2gIR0C0sfxmK64EdX2UKGgGR0Ca9S50bLlnaAdN6ANoCEdAtLUutDD0lXV9lChoBkdAmi41V94NZ2gHTegDaAhHQLS3yxn3+Mt1fZQoaAZHQIcCk0P6KtRoB03oA2gIR0C0uG0iILw4dX2UKGgGR0CUjN2c8TzvaAdN6ANoCEdAtLkdRoAXEnV9lChoBkdAmwiUbYK6WmgHTegDaAhHQLS80j8k2P11fZQoaAZHQJfNBdfLLZBoB03oA2gIR0C0vriBTXJ6dX2UKGgGR0CbZrBLf1pTaAdN6ANoCEdAtL8eE384xXV9lChoBkdAmXdk70WdmWgHTegDaAhHQLS/jB3Roh91fZQoaAZHQJumueoUBXFoB03oA2gIR0C0wrUxASnMdX2UKGgGR0CbtxnkT6BRaAdN6ANoCEdAtMSKlyimEXV9lChoBkdAljSO938n/mgHTegDaAhHQLTFHAfMfRx1fZQoaAZHQJxE0Si/O+toB03oA2gIR0C0xbs7IT4+dX2UKGgGR0Cb12o/zJ6qaAdN6ANoCEdAtMo5gqmTDHV9lChoBkdAmpRhb8m8d2gHTegDaAhHQLTMF2GZeAx1fZQoaAZHQJxlgxO+IuZoB03oA2gIR0C0zH/vWpZPdX2UKGgGR0CaR0RJVbRnaAdN6ANoCEdAtMztK02LpHV9lChoBkdAnEHJ79hqkGgHTegDaAhHQLTQHQcxTKl1fZQoaAZHQJvhTR8c+7loB03oA2gIR0C00ezTz/ZNdX2UKGgGR0CU7AiyY5T7aAdN6ANoCEdAtNJWG5+Yt3V9lChoBkdAmhIHcxj8UGgHTegDaAhHQLTSxGHpKSR1fZQoaAZHQJvGImdAgPpoB03oA2gIR0C01z6cNH6NdX2UKGgGR0CeHK/LkjoqaAdN6ANoCEdAtNmFbFCLM3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 97980, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1c474a0a693e707ee1d9f9619741f5b501a67eae81cf3a79141f9711aa29f8a
3
+ size 1112167
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1578.1752789291902, "std_reward": 311.10769828899, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-07T10:40:52.417355"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd5590adf0b75667009750e07addf3413b805c6c005fc2c9d2a2ec695ffe69e9
3
+ size 2136