diff --git "a/compressed_graph.dot" "b/compressed_graph.dot" new file mode 100644--- /dev/null +++ "b/compressed_graph.dot" @@ -0,0 +1,2192 @@ +strict digraph { +"0 /nncf_model_input_0"; +"1 /nncf_model_input_1"; +"2 /nncf_model_input_2"; +"3 BertForTokenClassification/BertModel[bert]/__getitem___0"; +"4 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFEmbedding[word_embeddings]/embedding_0"; +"5 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFEmbedding[token_type_embeddings]/embedding_0"; +"6 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/__add___0"; +"7 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFEmbedding[position_embeddings]/embedding_0"; +"8 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/__iadd___0"; +"9 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"10 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/Dropout[dropout]/dropout_0"; +"11 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"12 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"13 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"14 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"15 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"16 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"17 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"18 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"19 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"20 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"21 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"22 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"23 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"24 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"25 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"26 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"27 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"28 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"29 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"30 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"31 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"32 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"33 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"34 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"35 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"36 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"37 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"38 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"39 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"40 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"41 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"42 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"43 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"44 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"45 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"46 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"47 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"48 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"49 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"50 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"51 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"52 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/__add___0"; +"53 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"54 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"55 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"56 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"57 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"58 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"59 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"60 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"61 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"62 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"63 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"64 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"65 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"66 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"67 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"68 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"69 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"70 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"71 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"72 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"73 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"74 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"75 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"76 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"77 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"78 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"79 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"80 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"81 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"82 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"83 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"84 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"85 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"86 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"87 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"88 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"89 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"90 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"91 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"92 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"93 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"94 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"95 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/__add___0"; +"96 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"97 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"98 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"99 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"100 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"101 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"102 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"103 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"104 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"105 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"106 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"107 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"108 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"109 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"110 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"111 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"112 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"113 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"114 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"115 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"116 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"117 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"118 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"119 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"120 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"121 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"122 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"123 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"124 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"125 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"126 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"127 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"128 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"129 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"130 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"131 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"132 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"133 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"134 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"135 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"136 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"137 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"138 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/__add___0"; +"139 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"140 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"141 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"142 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"143 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"144 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"145 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"146 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"147 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"148 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"149 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"150 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"151 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"152 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"153 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"154 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"155 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"156 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"157 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"158 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"159 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"160 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"161 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"162 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"163 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"164 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"165 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"166 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"167 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"168 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"169 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"170 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"171 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"172 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"173 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"174 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"175 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"176 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"177 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"178 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"179 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"180 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"181 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/__add___0"; +"182 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"183 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"184 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"185 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"186 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"187 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"188 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"189 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"190 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"191 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"192 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"193 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"194 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"195 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"196 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"197 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"198 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"199 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"200 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"201 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"202 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"203 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"204 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"205 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"206 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"207 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"208 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"209 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"210 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"211 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"212 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"213 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"214 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"215 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"216 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"217 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"218 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"219 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"220 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"221 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"222 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"223 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"224 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/__add___0"; +"225 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"226 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"227 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"228 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"229 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"230 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"231 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"232 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"233 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"234 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"235 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"236 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"237 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"238 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"239 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"240 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"241 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"242 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"243 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"244 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"245 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"246 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"247 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"248 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"249 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"250 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"251 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"252 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"253 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"254 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"255 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"256 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"257 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"258 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"259 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"260 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"261 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"262 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"263 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"264 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"265 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"266 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"267 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/__add___0"; +"268 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"269 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"270 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"271 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"272 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"273 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"274 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"275 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"276 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"277 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"278 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"279 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"280 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"281 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"282 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"283 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"284 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"285 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"286 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"287 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"288 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"289 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"290 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"291 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"292 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"293 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"294 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"295 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"296 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"297 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"298 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"299 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"300 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"301 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"302 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"303 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"304 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"305 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"306 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"307 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"308 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"309 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"310 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/__add___0"; +"311 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"312 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"313 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"314 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"315 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"316 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"317 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"318 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"319 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"320 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"321 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"322 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"323 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"324 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"325 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"326 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"327 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"328 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"329 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"330 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"331 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"332 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"333 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"334 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"335 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"336 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"337 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"338 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"339 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"340 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"341 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"342 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"343 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"344 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"345 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"346 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"347 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"348 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"349 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"350 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"351 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"352 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"353 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/__add___0"; +"354 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"355 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"356 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"357 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"358 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"359 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"360 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"361 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"362 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"363 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"364 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"365 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"366 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"367 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"368 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"369 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"370 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"371 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"372 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"373 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"374 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"375 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"376 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"377 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"378 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"379 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"380 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"381 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"382 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"383 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"384 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"385 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"386 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"387 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"388 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"389 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"390 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"391 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"392 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"393 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"394 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"395 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"396 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/__add___0"; +"397 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"398 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"399 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"400 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"401 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"402 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"403 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"404 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"405 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"406 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"407 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"408 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"409 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"410 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"411 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"412 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"413 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"414 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"415 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"416 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"417 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"418 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"419 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"420 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"421 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"422 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"423 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"424 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"425 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"426 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"427 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"428 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"429 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"430 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"431 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"432 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"433 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"434 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"435 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"436 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"437 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"438 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"439 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/__add___0"; +"440 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"441 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"442 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"443 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"444 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"445 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"446 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"447 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"448 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"449 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"450 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"451 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"452 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"453 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"454 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"455 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"456 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"457 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"458 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"459 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"460 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"461 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"462 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"463 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"464 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"465 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"466 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"467 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"468 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"469 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"470 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"471 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"472 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"473 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"474 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"475 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"476 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"477 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"478 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"479 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"480 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"481 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"482 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/__add___0"; +"483 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"484 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"485 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"486 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"487 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"488 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"489 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"490 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"491 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"492 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"493 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"494 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"495 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"496 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"497 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"498 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"499 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"500 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"501 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"502 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"503 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"504 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"505 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"506 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"507 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"508 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"509 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"510 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"511 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"512 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"513 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"514 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"515 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"516 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"517 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"518 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"519 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"520 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"521 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"522 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"523 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"524 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"525 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/__add___0"; +"526 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"527 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"528 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"529 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"530 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"531 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"532 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"533 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"534 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"535 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"536 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"537 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"538 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"539 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"540 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"541 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"542 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"543 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"544 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"545 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"546 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"547 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"548 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"549 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"550 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"551 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"552 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"553 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"554 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"555 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"556 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"557 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"558 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"559 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"560 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"561 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"562 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"563 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"564 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"565 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"566 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"567 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"568 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/__add___0"; +"569 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"570 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"571 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"572 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"573 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"574 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"575 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"576 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"577 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"578 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"579 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"580 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"581 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"582 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"583 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"584 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"585 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"586 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"587 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"588 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"589 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"590 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"591 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"592 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"593 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"594 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"595 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"596 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"597 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"598 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"599 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"600 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"601 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"602 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"603 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"604 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"605 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"606 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"607 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"608 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"609 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"610 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"611 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/__add___0"; +"612 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"613 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"614 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"615 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"616 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"617 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"618 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"619 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"620 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"621 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"622 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"623 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"624 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"625 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"626 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"627 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"628 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"629 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"630 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"631 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"632 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"633 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"634 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"635 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"636 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"637 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"638 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"639 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"640 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"641 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"642 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"643 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"644 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"645 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"646 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"647 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"648 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"649 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"650 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"651 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"652 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"653 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"654 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/__add___0"; +"655 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"656 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"657 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"658 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"659 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"660 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"661 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"662 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"663 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"664 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"665 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"666 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"667 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"668 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"669 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"670 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"671 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"672 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"673 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"674 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"675 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"676 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"677 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"678 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"679 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"680 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"681 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"682 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"683 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"684 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"685 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"686 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"687 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"688 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"689 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"690 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"691 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"692 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"693 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"694 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"695 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"696 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"697 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/__add___0"; +"698 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"699 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"700 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"701 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"702 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"703 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"704 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"705 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"706 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"707 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"708 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"709 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"710 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"711 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"712 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"713 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"714 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"715 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"716 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"717 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"718 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"719 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"720 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"721 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"722 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"723 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"724 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"725 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"726 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"727 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"728 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"729 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"730 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"731 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"732 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"733 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"734 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"735 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"736 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"737 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"738 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"739 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"740 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/__add___0"; +"741 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"742 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"743 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"744 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"745 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"746 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"747 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"748 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"749 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"750 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"751 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"752 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"753 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"754 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"755 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"756 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"757 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"758 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"759 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"760 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"761 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"762 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"763 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"764 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"765 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"766 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"767 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"768 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"769 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"770 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"771 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"772 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"773 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"774 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"775 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"776 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"777 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"778 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"779 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"780 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"781 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"782 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"783 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/__add___0"; +"784 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"785 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"786 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"787 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"788 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"789 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"790 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"791 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"792 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"793 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"794 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"795 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"796 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"797 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"798 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"799 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"800 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"801 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"802 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"803 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"804 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"805 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"806 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"807 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"808 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"809 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"810 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"811 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"812 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"813 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"814 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"815 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"816 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"817 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"818 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"819 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"820 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"821 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"822 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"823 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"824 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"825 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"826 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/__add___0"; +"827 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"828 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"829 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"830 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"831 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"832 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"833 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"834 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"835 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"836 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"837 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"838 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"839 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"840 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"841 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"842 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"843 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"844 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"845 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"846 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"847 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"848 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"849 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"850 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"851 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"852 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"853 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"854 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"855 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"856 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"857 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"858 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"859 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"860 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"861 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"862 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"863 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"864 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"865 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"866 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"867 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"868 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"869 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/__add___0"; +"870 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"871 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"872 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"873 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"874 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"875 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"876 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"877 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"878 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"879 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"880 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"881 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"882 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"883 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"884 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"885 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"886 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"887 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"888 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"889 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"890 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"891 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"892 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"893 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"894 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"895 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"896 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"897 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"898 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"899 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"900 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"901 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"902 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"903 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"904 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"905 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"906 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"907 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"908 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"909 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"910 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"911 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"912 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/__add___0"; +"913 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"914 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"915 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"916 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"917 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"918 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"919 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"920 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"921 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"922 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"923 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"924 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"925 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"926 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"927 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"928 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"929 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"930 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"931 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"932 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"933 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"934 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"935 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"936 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"937 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"938 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"939 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"940 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"941 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"942 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"943 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"944 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"945 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"946 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"947 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"948 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"949 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"950 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"951 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"952 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"953 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"954 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"955 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/__add___0"; +"956 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"957 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"958 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"959 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"960 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"961 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"962 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"963 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"964 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"965 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"966 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"967 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"968 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"969 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"970 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"971 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"972 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"973 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"974 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"975 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"976 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"977 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"978 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"979 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"980 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"981 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"982 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"983 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"984 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"985 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"986 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"987 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"988 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"989 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"990 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"991 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"992 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"993 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"994 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"995 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"996 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"997 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"998 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/__add___0"; +"999 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"1000 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"1001 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0"; +"1002 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0"; +"1003 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0"; +"1004 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"1005 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0"; +"1006 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0"; +"1007 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0"; +"1008 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/view_0"; +"1009 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/permute_0"; +"1010 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"1011 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0"; +"1012 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0"; +"1013 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/view_1"; +"1014 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/permute_1"; +"1015 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/view_2"; +"1016 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/permute_2"; +"1017 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/transpose_0"; +"1018 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/matmul_0"; +"1019 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0"; +"1020 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/__add___0"; +"1021 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/softmax_0"; +"1022 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0"; +"1023 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/matmul_1"; +"1024 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0"; +"1025 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/permute_3"; +"1026 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0"; +"1027 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/view_3"; +"1028 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"1029 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0"; +"1030 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0"; +"1031 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/__add___0"; +"1032 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"1033 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"1034 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0"; +"1035 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0"; +"1036 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0"; +"1037 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0"; +"1038 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"1039 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/NNCFLinear[dense]/linear_0"; +"1040 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/Dropout[dropout]/dropout_0"; +"1041 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/__add___0"; +"1042 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0"; +"1043 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/AsymmetricQuantizer/asymmetric_quantize_0"; +"1044 BertForTokenClassification/Dropout[dropout]/dropout_0"; +"1045 BertForTokenClassification/NNCFLinear[classifier]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0"; +"1046 BertForTokenClassification/NNCFLinear[classifier]/linear_0"; +"1047 /nncf_model_output_0"; +"0 /nncf_model_input_0" -> "5 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFEmbedding[token_type_embeddings]/embedding_0" [label="(8, 160) \n0 -> 0", style=dashed]; +"1 /nncf_model_input_1" -> "4 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFEmbedding[word_embeddings]/embedding_0" [label="(8, 160) \n0 -> 0", style=dashed]; +"2 /nncf_model_input_2" -> "3 BertForTokenClassification/BertModel[bert]/__getitem___0" [label="(8, 160) \n0 -> 0", style=dashed]; +"4 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFEmbedding[word_embeddings]/embedding_0" -> "6 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"5 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFEmbedding[token_type_embeddings]/embedding_0" -> "6 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"6 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/__add___0" -> "8 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/__iadd___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"7 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFEmbedding[position_embeddings]/embedding_0" -> "8 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/__iadd___0" [label="(1, 160, 1024) \n0 -> 1", style=solid]; +"8 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/__iadd___0" -> "9 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"9 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "10 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"10 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/Dropout[dropout]/dropout_0" -> "12 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"10 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/Dropout[dropout]/dropout_0" -> "16 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"10 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/Dropout[dropout]/dropout_0" -> "22 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"10 BertForTokenClassification/BertModel[bert]/BertEmbeddings[embeddings]/Dropout[dropout]/dropout_0" -> "42 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"11 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "13 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"12 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "13 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"13 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "14 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"14 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "26 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"15 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "17 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"16 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "17 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"17 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "18 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"18 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "19 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"19 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "20 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"20 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "28 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"21 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "23 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"22 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "23 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"23 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "24 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"24 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "25 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"25 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "34 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"26 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "27 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"27 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "29 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"28 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "29 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"29 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "30 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"30 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "31 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"31 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "32 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"32 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "33 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"33 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "34 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"34 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "35 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"35 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "36 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"36 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "37 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"37 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "38 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"38 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "40 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"39 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "40 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"40 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "41 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"41 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "42 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"42 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "43 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"43 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "45 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"43 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "52 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"44 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "46 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"45 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "46 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"46 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "47 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"47 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "48 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"48 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "50 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"49 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "50 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"50 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "51 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"51 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "52 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"52 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/__add___0" -> "53 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"53 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "55 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"53 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "59 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"53 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "65 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"53 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[0]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "85 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"54 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "56 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"55 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "56 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"56 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "57 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"57 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "69 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"58 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "60 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"59 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "60 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"60 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "61 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"61 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "62 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"62 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "63 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"63 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "71 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"64 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "66 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"65 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "66 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"66 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "67 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"67 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "68 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"68 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "77 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"69 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "70 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"70 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "72 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"71 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "72 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"72 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "73 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"73 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "74 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"74 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "75 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"75 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "76 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"76 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "77 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"77 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "78 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"78 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "79 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"79 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "80 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"80 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "81 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"81 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "83 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"82 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "83 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"83 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "84 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"84 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "85 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"85 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "86 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"86 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "88 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"86 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "95 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"87 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "89 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"88 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "89 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"89 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "90 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"90 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "91 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"91 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "93 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"92 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "93 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"93 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "94 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"94 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "95 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"95 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/__add___0" -> "96 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"96 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "98 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"96 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "102 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"96 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "108 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"96 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[1]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "128 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"97 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "99 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"98 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "99 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"99 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "100 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"100 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "112 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"101 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "103 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"102 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "103 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"103 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "104 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"104 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "105 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"105 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "106 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"106 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "114 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"107 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "109 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"108 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "109 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"109 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "110 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"110 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "111 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"111 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "120 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"112 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "113 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"113 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "115 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"114 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "115 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"115 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "116 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"116 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "117 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"117 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "118 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"118 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "119 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"119 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "120 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"120 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "121 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"121 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "122 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"122 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "123 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"123 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "124 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"124 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "126 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"125 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "126 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"126 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "127 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"127 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "128 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"128 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "129 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"129 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "131 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"129 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "138 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"130 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "132 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"131 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "132 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"132 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "133 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"133 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "134 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"134 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "136 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"135 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "136 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"136 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "137 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"137 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "138 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"138 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/__add___0" -> "139 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"139 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "141 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"139 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "145 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"139 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "151 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"139 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[2]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "171 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"140 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "142 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"141 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "142 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"142 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "143 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"143 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "155 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"144 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "146 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"145 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "146 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"146 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "147 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"147 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "148 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"148 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "149 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"149 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "157 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"150 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "152 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"151 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "152 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"152 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "153 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"153 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "154 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"154 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "163 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"155 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "156 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"156 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "158 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"157 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "158 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"158 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "159 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"159 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "160 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"160 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "161 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"161 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "162 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"162 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "163 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"163 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "164 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"164 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "165 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"165 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "166 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"166 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "167 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"167 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "169 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"168 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "169 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"169 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "170 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"170 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "171 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"171 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "172 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"172 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "174 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"172 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "181 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"173 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "175 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"174 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "175 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"175 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "176 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"176 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "177 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"177 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "179 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"178 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "179 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"179 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "180 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"180 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "181 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"181 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/__add___0" -> "182 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"182 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "184 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"182 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "188 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"182 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "194 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"182 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[3]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "214 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"183 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "185 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"184 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "185 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"185 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "186 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"186 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "198 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"187 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "189 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"188 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "189 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"189 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "190 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"190 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "191 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"191 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "192 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"192 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "200 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"193 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "195 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"194 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "195 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"195 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "196 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"196 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "197 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"197 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "206 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"198 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "199 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"199 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "201 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"200 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "201 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"201 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "202 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"202 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "203 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"203 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "204 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"204 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "205 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"205 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "206 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"206 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "207 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"207 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "208 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"208 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "209 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"209 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "210 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"210 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "212 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"211 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "212 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"212 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "213 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"213 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "214 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"214 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "215 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"215 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "217 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"215 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "224 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"216 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "218 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"217 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "218 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"218 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "219 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"219 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "220 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"220 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "222 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"221 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "222 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"222 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "223 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"223 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "224 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"224 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/__add___0" -> "225 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"225 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "227 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"225 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "231 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"225 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "237 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"225 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[4]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "257 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"226 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "228 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"227 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "228 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"228 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "229 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"229 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "241 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"230 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "232 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"231 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "232 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"232 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "233 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"233 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "234 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"234 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "235 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"235 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "243 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"236 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "238 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"237 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "238 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"238 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "239 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"239 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "240 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"240 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "249 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"241 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "242 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"242 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "244 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"243 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "244 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"244 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "245 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"245 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "246 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"246 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "247 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"247 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "248 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"248 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "249 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"249 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "250 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"250 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "251 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"251 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "252 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"252 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "253 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"253 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "255 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"254 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "255 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"255 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "256 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"256 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "257 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"257 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "258 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"258 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "260 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"258 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "267 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"259 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "261 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"260 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "261 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"261 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "262 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"262 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "263 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"263 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "265 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"264 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "265 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"265 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "266 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"266 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "267 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"267 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/__add___0" -> "268 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"268 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "270 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"268 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "274 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"268 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "280 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"268 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[5]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "300 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"269 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "271 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"270 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "271 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"271 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "272 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"272 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "284 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"273 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "275 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"274 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "275 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"275 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "276 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"276 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "277 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"277 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "278 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"278 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "286 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"279 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "281 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"280 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "281 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"281 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "282 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"282 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "283 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"283 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "292 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"284 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "285 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"285 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "287 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"286 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "287 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"287 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "288 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"288 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "289 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"289 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "290 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"290 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "291 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"291 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "292 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"292 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "293 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"293 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "294 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"294 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "295 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"295 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "296 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"296 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "298 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"297 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "298 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"298 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "299 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"299 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "300 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"300 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "301 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"301 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "303 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"301 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "310 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"302 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "304 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"303 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "304 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"304 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "305 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"305 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "306 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"306 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "308 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"307 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "308 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"308 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "309 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"309 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "310 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"310 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/__add___0" -> "311 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"311 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "313 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"311 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "317 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"311 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "323 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"311 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[6]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "343 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"312 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "314 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"313 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "314 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"314 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "315 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"315 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "327 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"316 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "318 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"317 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "318 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"318 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "319 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"319 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "320 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"320 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "321 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"321 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "329 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"322 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "324 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"323 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "324 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"324 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "325 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"325 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "326 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"326 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "335 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"327 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "328 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"328 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "330 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"329 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "330 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"330 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "331 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"331 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "332 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"332 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "333 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"333 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "334 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"334 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "335 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"335 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "336 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"336 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "337 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"337 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "338 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"338 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "339 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"339 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "341 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"340 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "341 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"341 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "342 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"342 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "343 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"343 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "344 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"344 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "346 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"344 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "353 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"345 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "347 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"346 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "347 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"347 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "348 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"348 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "349 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"349 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "351 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"350 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "351 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"351 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "352 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"352 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "353 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"353 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/__add___0" -> "354 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"354 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "356 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"354 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "360 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"354 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "366 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"354 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[7]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "386 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"355 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "357 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"356 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "357 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"357 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "358 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"358 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "370 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"359 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "361 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"360 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "361 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"361 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "362 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"362 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "363 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"363 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "364 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"364 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "372 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"365 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "367 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"366 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "367 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"367 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "368 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"368 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "369 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"369 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "378 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"370 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "371 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"371 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "373 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"372 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "373 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"373 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "374 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"374 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "375 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"375 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "376 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"376 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "377 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"377 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "378 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"378 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "379 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"379 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "380 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"380 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "381 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"381 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "382 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"382 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "384 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"383 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "384 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"384 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "385 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"385 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "386 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"386 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "387 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"387 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "389 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"387 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "396 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"388 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "390 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"389 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "390 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"390 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "391 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"391 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "392 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"392 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "394 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"393 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "394 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"394 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "395 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"395 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "396 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"396 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/__add___0" -> "397 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"397 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "399 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"397 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "403 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"397 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "409 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"397 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[8]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "429 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"398 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "400 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"399 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "400 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"400 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "401 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"401 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "413 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"402 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "404 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"403 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "404 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"404 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "405 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"405 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "406 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"406 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "407 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"407 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "415 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"408 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "410 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"409 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "410 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"410 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "411 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"411 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "412 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"412 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "421 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"413 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "414 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"414 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "416 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"415 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "416 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"416 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "417 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"417 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "418 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"418 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "419 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"419 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "420 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"420 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "421 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"421 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "422 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"422 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "423 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"423 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "424 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"424 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "425 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"425 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "427 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"426 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "427 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"427 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "428 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"428 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "429 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"429 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "430 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"430 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "432 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"430 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "439 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"431 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "433 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"432 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "433 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"433 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "434 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"434 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "435 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"435 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "437 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"436 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "437 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"437 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "438 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"438 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "439 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"439 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/__add___0" -> "440 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"440 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "442 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"440 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "446 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"440 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "452 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"440 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[9]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "472 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"441 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "443 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"442 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "443 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"443 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "444 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"444 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "456 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"445 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "447 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"446 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "447 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"447 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "448 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"448 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "449 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"449 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "450 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"450 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "458 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"451 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "453 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"452 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "453 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"453 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "454 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"454 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "455 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"455 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "464 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"456 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "457 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"457 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "459 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"458 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "459 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"459 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "460 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"460 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "461 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"461 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "462 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"462 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "463 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"463 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "464 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"464 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "465 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"465 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "466 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"466 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "467 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"467 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "468 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"468 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "470 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"469 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "470 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"470 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "471 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"471 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "472 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"472 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "473 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"473 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "475 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"473 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "482 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"474 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "476 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"475 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "476 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"476 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "477 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"477 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "478 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"478 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "480 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"479 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "480 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"480 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "481 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"481 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "482 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"482 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/__add___0" -> "483 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"483 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "485 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"483 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "489 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"483 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "495 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"483 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[10]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "515 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"484 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "486 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"485 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "486 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"486 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "487 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"487 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "499 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"488 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "490 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"489 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "490 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"490 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "491 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"491 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "492 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"492 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "493 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"493 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "501 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"494 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "496 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"495 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "496 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"496 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "497 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"497 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "498 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"498 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "507 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"499 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "500 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"500 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "502 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"501 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "502 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"502 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "503 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"503 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "504 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"504 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "505 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"505 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "506 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"506 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "507 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"507 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "508 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"508 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "509 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"509 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "510 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"510 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "511 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"511 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "513 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"512 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "513 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"513 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "514 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"514 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "515 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"515 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "516 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"516 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "518 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"516 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "525 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"517 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "519 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"518 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "519 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"519 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "520 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"520 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "521 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"521 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "523 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"522 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "523 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"523 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "524 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"524 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "525 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"525 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/__add___0" -> "526 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"526 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "528 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"526 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "532 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"526 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "538 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"526 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[11]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "558 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"527 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "529 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"528 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "529 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"529 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "530 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"530 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "542 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"531 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "533 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"532 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "533 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"533 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "534 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"534 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "535 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"535 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "536 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"536 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "544 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"537 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "539 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"538 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "539 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"539 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "540 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"540 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "541 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"541 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "550 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"542 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "543 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"543 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "545 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"544 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "545 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"545 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "546 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"546 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "547 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"547 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "548 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"548 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "549 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"549 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "550 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"550 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "551 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"551 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "552 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"552 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "553 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"553 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "554 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"554 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "556 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"555 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "556 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"556 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "557 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"557 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "558 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"558 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "559 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"559 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "561 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"559 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "568 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"560 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "562 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"561 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "562 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"562 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "563 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"563 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "564 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"564 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "566 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"565 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "566 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"566 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "567 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"567 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "568 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"568 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/__add___0" -> "569 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"569 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "571 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"569 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "575 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"569 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "581 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"569 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[12]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "601 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"570 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "572 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"571 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "572 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"572 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "573 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"573 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "585 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"574 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "576 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"575 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "576 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"576 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "577 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"577 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "578 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"578 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "579 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"579 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "587 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"580 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "582 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"581 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "582 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"582 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "583 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"583 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "584 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"584 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "593 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"585 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "586 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"586 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "588 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"587 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "588 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"588 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "589 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"589 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "590 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"590 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "591 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"591 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "592 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"592 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "593 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"593 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "594 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"594 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "595 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"595 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "596 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"596 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "597 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"597 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "599 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"598 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "599 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"599 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "600 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"600 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "601 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"601 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "602 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"602 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "604 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"602 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "611 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"603 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "605 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"604 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "605 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"605 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "606 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"606 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "607 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"607 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "609 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"608 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "609 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"609 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "610 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"610 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "611 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"611 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/__add___0" -> "612 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"612 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "614 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"612 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "618 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"612 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "624 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"612 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[13]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "644 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"613 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "615 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"614 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "615 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"615 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "616 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"616 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "628 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"617 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "619 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"618 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "619 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"619 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "620 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"620 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "621 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"621 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "622 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"622 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "630 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"623 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "625 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"624 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "625 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"625 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "626 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"626 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "627 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"627 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "636 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"628 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "629 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"629 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "631 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"630 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "631 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"631 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "632 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"632 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "633 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"633 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "634 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"634 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "635 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"635 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "636 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"636 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "637 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"637 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "638 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"638 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "639 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"639 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "640 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"640 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "642 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"641 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "642 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"642 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "643 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"643 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "644 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"644 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "645 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"645 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "647 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"645 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "654 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"646 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "648 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"647 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "648 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"648 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "649 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"649 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "650 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"650 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "652 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"651 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "652 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"652 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "653 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"653 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "654 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"654 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/__add___0" -> "655 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"655 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "657 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"655 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "661 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"655 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "667 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"655 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[14]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "687 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"656 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "658 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"657 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "658 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"658 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "659 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"659 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "671 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"660 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "662 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"661 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "662 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"662 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "663 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"663 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "664 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"664 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "665 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"665 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "673 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"666 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "668 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"667 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "668 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"668 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "669 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"669 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "670 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"670 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "679 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"671 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "672 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"672 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "674 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"673 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "674 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"674 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "675 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"675 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "676 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"676 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "677 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"677 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "678 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"678 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "679 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"679 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "680 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"680 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "681 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"681 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "682 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"682 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "683 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"683 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "685 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"684 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "685 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"685 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "686 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"686 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "687 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"687 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "688 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"688 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "690 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"688 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "697 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"689 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "691 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"690 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "691 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"691 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "692 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"692 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "693 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"693 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "695 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"694 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "695 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"695 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "696 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"696 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "697 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"697 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/__add___0" -> "698 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"698 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "700 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"698 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "704 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"698 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "710 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"698 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[15]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "730 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"699 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "701 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"700 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "701 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"701 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "702 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"702 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "714 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"703 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "705 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"704 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "705 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"705 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "706 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"706 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "707 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"707 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "708 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"708 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "716 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"709 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "711 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"710 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "711 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"711 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "712 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"712 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "713 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"713 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "722 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"714 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "715 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"715 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "717 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"716 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "717 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"717 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "718 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"718 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "719 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"719 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "720 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"720 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "721 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"721 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "722 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"722 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "723 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"723 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "724 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"724 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "725 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"725 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "726 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"726 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "728 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"727 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "728 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"728 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "729 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"729 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "730 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"730 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "731 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"731 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "733 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"731 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "740 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"732 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "734 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"733 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "734 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"734 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "735 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"735 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "736 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"736 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "738 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"737 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "738 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"738 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "739 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"739 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "740 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"740 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/__add___0" -> "741 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"741 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "743 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"741 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "747 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"741 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "753 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"741 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[16]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "773 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"742 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "744 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"743 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "744 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"744 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "745 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"745 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "757 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"746 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "748 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"747 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "748 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"748 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "749 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"749 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "750 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"750 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "751 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"751 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "759 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"752 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "754 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"753 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "754 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"754 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "755 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"755 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "756 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"756 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "765 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"757 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "758 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"758 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "760 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"759 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "760 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"760 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "761 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"761 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "762 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"762 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "763 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"763 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "764 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"764 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "765 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"765 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "766 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"766 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "767 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"767 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "768 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"768 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "769 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"769 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "771 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"770 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "771 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"771 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "772 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"772 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "773 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"773 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "774 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"774 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "776 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"774 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "783 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"775 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "777 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"776 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "777 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"777 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "778 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"778 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "779 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"779 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "781 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"780 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "781 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"781 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "782 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"782 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "783 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"783 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/__add___0" -> "784 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"784 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "786 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"784 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "790 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"784 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "796 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"784 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[17]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "816 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"785 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "787 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"786 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "787 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"787 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "788 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"788 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "800 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"789 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "791 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"790 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "791 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"791 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "792 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"792 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "793 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"793 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "794 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"794 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "802 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"795 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "797 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"796 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "797 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"797 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "798 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"798 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "799 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"799 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "808 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"800 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "801 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"801 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "803 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"802 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "803 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"803 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "804 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"804 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "805 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"805 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "806 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"806 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "807 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"807 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "808 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"808 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "809 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"809 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "810 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"810 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "811 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"811 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "812 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"812 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "814 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"813 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "814 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"814 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "815 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"815 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "816 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"816 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "817 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"817 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "819 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"817 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "826 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"818 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "820 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"819 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "820 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"820 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "821 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"821 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "822 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"822 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "824 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"823 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "824 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"824 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "825 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"825 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "826 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"826 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/__add___0" -> "827 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"827 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "829 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"827 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "833 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"827 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "839 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"827 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[18]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "859 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"828 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "830 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"829 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "830 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"830 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "831 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"831 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "843 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"832 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "834 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"833 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "834 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"834 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "835 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"835 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "836 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"836 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "837 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"837 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "845 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"838 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "840 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"839 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "840 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"840 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "841 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"841 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "842 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"842 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "851 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"843 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "844 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"844 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "846 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"845 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "846 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"846 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "847 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"847 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "848 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"848 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "849 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"849 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "850 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"850 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "851 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"851 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "852 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"852 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "853 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"853 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "854 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"854 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "855 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"855 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "857 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"856 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "857 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"857 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "858 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"858 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "859 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"859 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "860 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"860 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "862 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"860 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "869 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"861 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "863 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"862 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "863 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"863 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "864 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"864 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "865 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"865 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "867 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"866 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "867 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"867 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "868 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"868 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "869 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"869 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/__add___0" -> "870 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"870 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "872 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"870 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "876 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"870 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "882 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"870 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[19]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "902 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"871 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "873 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"872 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "873 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"873 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "874 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"874 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "886 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"875 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "877 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"876 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "877 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"877 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "878 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"878 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "879 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"879 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "880 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"880 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "888 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"881 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "883 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"882 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "883 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"883 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "884 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"884 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "885 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"885 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "894 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"886 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "887 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"887 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "889 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"888 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "889 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"889 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "890 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"890 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "891 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"891 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "892 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"892 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "893 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"893 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "894 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"894 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "895 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"895 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "896 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"896 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "897 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"897 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "898 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"898 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "900 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"899 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "900 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"900 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "901 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"901 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "902 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"902 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "903 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"903 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "905 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"903 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "912 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"904 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "906 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"905 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "906 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"906 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "907 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"907 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "908 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"908 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "910 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"909 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "910 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"910 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "911 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"911 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "912 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"912 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/__add___0" -> "913 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"913 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "915 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"913 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "919 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"913 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "925 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"913 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[20]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "945 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"914 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "916 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"915 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "916 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"916 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "917 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"917 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "929 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"918 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "920 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"919 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "920 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"920 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "921 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"921 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "922 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"922 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "923 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"923 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "931 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"924 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "926 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"925 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "926 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"926 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "927 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"927 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "928 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"928 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "937 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"929 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "930 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"930 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "932 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"931 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "932 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"932 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "933 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"933 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "934 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"934 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "935 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"935 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "936 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"936 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "937 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"937 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "938 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"938 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "939 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"939 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "940 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"940 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "941 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"941 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "943 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"942 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "943 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"943 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "944 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"944 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "945 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"945 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "946 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"946 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "948 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"946 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "955 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"947 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "949 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"948 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "949 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"949 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "950 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"950 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "951 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"951 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "953 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"952 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "953 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"953 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "954 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"954 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "955 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"955 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/__add___0" -> "956 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"956 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "958 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"956 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "962 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"956 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "968 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"956 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[21]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "988 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"957 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "959 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"958 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "959 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"959 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "960 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"960 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "972 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"961 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "963 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"962 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "963 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"963 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "964 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"964 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "965 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"965 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "966 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"966 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "974 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"967 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "969 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"968 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "969 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"969 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "970 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"970 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "971 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"971 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "980 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"972 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "973 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"973 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "975 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"974 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "975 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"975 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "976 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"976 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "977 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"977 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "978 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"978 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "979 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"979 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "980 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"980 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "981 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"981 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "982 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"982 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "983 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"983 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "984 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"984 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "986 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"985 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "986 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"986 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "987 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"987 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "988 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"988 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "989 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"989 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "991 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"989 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "998 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"990 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "992 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"991 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "992 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"992 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "993 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"993 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "994 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"994 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "996 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"995 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "996 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"996 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "997 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"997 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "998 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"998 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/__add___0" -> "999 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"999 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "1001 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"999 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "1005 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"999 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "1011 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"999 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[22]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "1031 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"1000 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "1002 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"1001 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/AsymmetricQuantizer/asymmetric_quantize_0" -> "1002 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1002 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/linear_0" -> "1003 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1003 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[query]/SymmetricQuantizer/symmetric_quantize_0" -> "1015 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/view_2" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1004 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "1006 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"1005 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/AsymmetricQuantizer/asymmetric_quantize_0" -> "1006 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1006 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/linear_0" -> "1007 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1007 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[key]/SymmetricQuantizer/symmetric_quantize_0" -> "1008 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/view_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1008 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/view_0" -> "1009 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/permute_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"1009 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/permute_0" -> "1017 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"1010 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "1012 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"1011 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/AsymmetricQuantizer/asymmetric_quantize_0" -> "1012 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1012 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/NNCFLinear[value]/linear_0" -> "1013 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/view_1" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1013 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/view_1" -> "1014 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/permute_1" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"1014 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/permute_1" -> "1023 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 64) \n0 -> 1", style=solid]; +"1015 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/view_2" -> "1016 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/permute_2" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"1016 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/permute_2" -> "1018 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"1017 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/transpose_0" -> "1018 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" [label="(8, 16, 64, 160) \n0 -> 1", style=solid]; +"1018 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/matmul_0" -> "1019 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"1019 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/__truediv___0" -> "1020 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/__add___0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"1020 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/__add___0" -> "1021 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"1021 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/softmax_0" -> "1022 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"1022 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/Dropout[dropout]/dropout_0" -> "1023 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" [label="(8, 16, 160, 160) \n0 -> 0", style=solid]; +"1023 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/matmul_1" -> "1024 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"1024 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/AsymmetricQuantizer/asymmetric_quantize_0" -> "1025 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/permute_3" [label="(8, 16, 160, 64) \n0 -> 0", style=solid]; +"1025 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/permute_3" -> "1026 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"1026 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/contiguous_0" -> "1027 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/view_3" [label="(8, 160, 16, 64) \n0 -> 0", style=solid]; +"1027 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfAttention[self]/view_3" -> "1029 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1028 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "1029 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 1024) \n0 -> 1", style=solid]; +"1029 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/NNCFLinear[dense]/linear_0" -> "1030 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1030 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/Dropout[dropout]/dropout_0" -> "1031 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1031 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/__add___0" -> "1032 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1032 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "1034 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1032 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertAttention[attention]/BertSelfOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "1041 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 1", style=solid]; +"1033 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "1035 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(4096, 1024) \n0 -> 1", style=solid]; +"1034 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/NNCFLinear[dense]/AsymmetricQuantizer/asymmetric_quantize_0" -> "1035 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1035 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/NNCFLinear[dense]/linear_0" -> "1036 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"1036 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/gelu_0" -> "1037 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"1037 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertIntermediate[intermediate]/GELUActivation[intermediate_act_fn]/AsymmetricQuantizer/asymmetric_quantize_0" -> "1039 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(8, 160, 4096) \n0 -> 0", style=solid]; +"1038 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/NNCFLinear[dense]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "1039 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/NNCFLinear[dense]/linear_0" [label="(1024, 4096) \n0 -> 1", style=solid]; +"1039 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/NNCFLinear[dense]/linear_0" -> "1040 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1040 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/Dropout[dropout]/dropout_0" -> "1041 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/__add___0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1041 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/__add___0" -> "1042 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1042 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/layer_norm_0" -> "1043 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/AsymmetricQuantizer/asymmetric_quantize_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1043 BertForTokenClassification/BertModel[bert]/BertEncoder[encoder]/ModuleList[layer]/BertLayer[23]/BertOutput[output]/NNCFLayerNorm[LayerNorm]/AsymmetricQuantizer/asymmetric_quantize_0" -> "1044 BertForTokenClassification/Dropout[dropout]/dropout_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1044 BertForTokenClassification/Dropout[dropout]/dropout_0" -> "1046 BertForTokenClassification/NNCFLinear[classifier]/linear_0" [label="(8, 160, 1024) \n0 -> 0", style=solid]; +"1045 BertForTokenClassification/NNCFLinear[classifier]/ModuleDict[pre_ops]/UpdateWeight[0]/SymmetricQuantizer[op]/symmetric_quantize_0" -> "1046 BertForTokenClassification/NNCFLinear[classifier]/linear_0" [label="(9, 1024) \n0 -> 1", style=solid]; +"1046 BertForTokenClassification/NNCFLinear[classifier]/linear_0" -> "1047 /nncf_model_output_0" [label="(8, 160, 9) \n0 -> 0", style=solid]; +}