Update README.md
Browse files
README.md
CHANGED
@@ -25,14 +25,6 @@ The following datasets are all in Chinese.
|
|
25 |
|
26 |
## Model List
|
27 |
The evaluation dataset is in Chinese, and we used the same language model **RoBERTa base** on different methods. In addition, considering that the test set of some datasets is small, which may lead to a large deviation in evaluation accuracy, the evaluation data here uses train, valid and test at the same time, and the final evaluation result adopts the **weighted average (w-avg)** method.
|
28 |
-
|
29 |
-
| Model | STS-B(w-avg) | ATEC | BQ | LCQMC | PAWSX | Avg. |
|
30 |
-
|:-----------------------:|:------------:|:-----------:|:----------|:----------|:----------:|:----------:|
|
31 |
-
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 78.61| -| -| -| -| -|
|
32 |
-
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 79.07| -| -| -| -| -|
|
33 |
-
| [hellonlp/simcse-large-zh](https://huggingface.co/hellonlp/simcse-roberta-large-zh) | 81.32| -| -| -| -| -|
|
34 |
-
|
35 |
-
|
36 |
| Model | STS-B(w-avg) | ATEC | BQ | LCQMC | PAWSX | Avg. |
|
37 |
|:-----------------------:|:------------:|:-----------:|:----------|:-------------|:------------:|:----------:|
|
38 |
| BERT-Whitening | 65.27| -| -| -| -| -|
|
|
|
25 |
|
26 |
## Model List
|
27 |
The evaluation dataset is in Chinese, and we used the same language model **RoBERTa base** on different methods. In addition, considering that the test set of some datasets is small, which may lead to a large deviation in evaluation accuracy, the evaluation data here uses train, valid and test at the same time, and the final evaluation result adopts the **weighted average (w-avg)** method.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
| Model | STS-B(w-avg) | ATEC | BQ | LCQMC | PAWSX | Avg. |
|
29 |
|:-----------------------:|:------------:|:-----------:|:----------|:-------------|:------------:|:----------:|
|
30 |
| BERT-Whitening | 65.27| -| -| -| -| -|
|