File size: 3,319 Bytes
7eebab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
def4996
 
 
 
 
3a2f2a7
def4996
 
 
 
 
 
 
 
 
3a2f2a7
 
 
 
 
def4996
 
3a2f2a7
def4996
 
7eebab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
base_model: MaziyarPanahi/calme-2.1-qwen2-7b
datasets:
- nvidia/HelpSteer2
- teknium/OpenHermes-2.5
- microsoft/orca-math-word-problems-200k
- Open-Orca/SlimOrca
language:
- en
library_name: transformers
license: apache-2.0
model_name: calme-2.1-qwen2-7b
pipeline_tag: text-generation
tags:
- chat
- qwen
- qwen2
- finetune
- chatml
- OpenHermes-2.5
- HelpSteer2
- Orca
- SlimOrca
- llama-cpp
- gguf-my-repo
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
---

# hellork/calme-2.1-qwen2-7b-IQ4_NL-GGUF
This model was converted to GGUF format from [`MaziyarPanahi/calme-2.1-qwen2-7b`](https://huggingface.co/MaziyarPanahi/calme-2.1-qwen2-7b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/MaziyarPanahi/calme-2.1-qwen2-7b) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo hellork/calme-2.1-qwen2-7b-IQ4_NL-GGUF --hf-file calme-2.1-qwen2-7b-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo hellork/calme-2.1-qwen2-7b-IQ4_NL-GGUF --hf-file calme-2.1-qwen2-7b-iq4_nl-imat.gguf -c 2048
```

### The Ship's Computer:

Interact with this model by speaking to it. Lean, fast, & private, networked speech to text, AI images, multi-modal voice chat, control apps, webcam, and sound with less than 4GiB of VRAM.
[whisper_dictation](https://github.com/themanyone/whisper_dictation)

*Quick start*
```bash
git clone -b main --single-branch https://github.com/themanyone/whisper_dictation.git
pip install -r whisper_dictation/requirements.txt

git clone https://github.com/ggerganov/whisper.cpp
cd whisper.cpp
GGML_CUDA=1 make -j # assuming CUDA is available. see docs
ln -s server ~/.local/bin/whisper_cpp_server # (just put it somewhere in $PATH)
whisper_cpp_server -l en -m models/ggml-tiny.en.bin --port 7777

# -ngl option assumes CUDA is available. see docs
llama-server --hf-repo hellork/calme-2.1-qwen2-7b-IQ4_NL-GGUF --hf-file calme-2.1-qwen2-7b-iq4_nl-imat.gguf -c 2048 -ngl 17 --port 8888

cd whisper_dictation
./whisper_cpp_client.py
```

See [the docs](https://github.com/themanyone/whisper_dictation) for tips on enabling the computer to talk back, draw AI images, carry out voice commands, and other features.

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo hellork/calme-2.1-qwen2-7b-IQ4_NL-GGUF --hf-file calme-2.1-qwen2-7b-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo hellork/calme-2.1-qwen2-7b-IQ4_NL-GGUF --hf-file calme-2.1-qwen2-7b-iq4_nl-imat.gguf -c 2048
```