File size: 3,319 Bytes
7eebab4 def4996 3a2f2a7 def4996 3a2f2a7 def4996 3a2f2a7 def4996 7eebab4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
base_model: MaziyarPanahi/calme-2.1-qwen2-7b
datasets:
- nvidia/HelpSteer2
- teknium/OpenHermes-2.5
- microsoft/orca-math-word-problems-200k
- Open-Orca/SlimOrca
language:
- en
library_name: transformers
license: apache-2.0
model_name: calme-2.1-qwen2-7b
pipeline_tag: text-generation
tags:
- chat
- qwen
- qwen2
- finetune
- chatml
- OpenHermes-2.5
- HelpSteer2
- Orca
- SlimOrca
- llama-cpp
- gguf-my-repo
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
---
# hellork/calme-2.1-qwen2-7b-IQ4_NL-GGUF
This model was converted to GGUF format from [`MaziyarPanahi/calme-2.1-qwen2-7b`](https://huggingface.co/MaziyarPanahi/calme-2.1-qwen2-7b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/MaziyarPanahi/calme-2.1-qwen2-7b) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo hellork/calme-2.1-qwen2-7b-IQ4_NL-GGUF --hf-file calme-2.1-qwen2-7b-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo hellork/calme-2.1-qwen2-7b-IQ4_NL-GGUF --hf-file calme-2.1-qwen2-7b-iq4_nl-imat.gguf -c 2048
```
### The Ship's Computer:
Interact with this model by speaking to it. Lean, fast, & private, networked speech to text, AI images, multi-modal voice chat, control apps, webcam, and sound with less than 4GiB of VRAM.
[whisper_dictation](https://github.com/themanyone/whisper_dictation)
*Quick start*
```bash
git clone -b main --single-branch https://github.com/themanyone/whisper_dictation.git
pip install -r whisper_dictation/requirements.txt
git clone https://github.com/ggerganov/whisper.cpp
cd whisper.cpp
GGML_CUDA=1 make -j # assuming CUDA is available. see docs
ln -s server ~/.local/bin/whisper_cpp_server # (just put it somewhere in $PATH)
whisper_cpp_server -l en -m models/ggml-tiny.en.bin --port 7777
# -ngl option assumes CUDA is available. see docs
llama-server --hf-repo hellork/calme-2.1-qwen2-7b-IQ4_NL-GGUF --hf-file calme-2.1-qwen2-7b-iq4_nl-imat.gguf -c 2048 -ngl 17 --port 8888
cd whisper_dictation
./whisper_cpp_client.py
```
See [the docs](https://github.com/themanyone/whisper_dictation) for tips on enabling the computer to talk back, draw AI images, carry out voice commands, and other features.
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo hellork/calme-2.1-qwen2-7b-IQ4_NL-GGUF --hf-file calme-2.1-qwen2-7b-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo hellork/calme-2.1-qwen2-7b-IQ4_NL-GGUF --hf-file calme-2.1-qwen2-7b-iq4_nl-imat.gguf -c 2048
```
|