PEFT
Safetensors
henryen commited on
Commit
96364e0
·
1 Parent(s): 1e9933d

update readme

Browse files
Files changed (2) hide show
  1. README.md +63 -4
  2. figures/evaluation.png +0 -0
README.md CHANGED
@@ -5,7 +5,66 @@ library_name: peft
5
 
6
  ---
7
 
8
- ### Model Sources
9
- <!-- Provide the basic links for the model. -->
10
- - **Repository:** https://github.com/pku-liang/OriGen
11
- - **Paper:** https://arxiv.org/abs/2407.16237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  ---
7
 
8
+ # OriGen: Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection
9
+
10
+ ### Introduction
11
+ OriGen is a fine-tuned lora model designed for Verilog code generation. It is trained on top of DeepSeek Coder 7B using datasets generated from code-to-code augmentation and self-reflection.
12
+
13
+
14
+ **Repository:** [pku-liang/OriGen](https://github.com/pku-liang/OriGen)
15
+
16
+ ### Evaluation Results
17
+ <img src="figures/evaluation.png" alt="evaluation" width="1000"/>
18
+
19
+ ### Quick Start
20
+
21
+ ```python
22
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
23
+ import torch
24
+ from peft import PeftModel
25
+
26
+ model_name = "deepseek-ai/deepseek-coder-7b-instruct-v1.5"
27
+
28
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
29
+
30
+ model = AutoModelForCausalLM.from_pretrained(
31
+ model_name,
32
+ low_cpu_mem_usage=True,
33
+ torch_dtype=torch.float16,
34
+ attn_implementation="flash_attention_2",
35
+ device_map="auto",
36
+ )
37
+
38
+ model = PeftModel.from_pretrained(model, model_id="henryen/OriGen")
39
+ model.eval()
40
+
41
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
42
+
43
+ prompt = "### Instruction: Please act as a professional Verilog designer. and provide Verilog code based on the given instruction. Generate a concise Verilog module for a 8 bit full adder, don't include any unnecessary code.\n### Response: "
44
+
45
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
46
+
47
+ outputs = model.generate(
48
+ **inputs,
49
+ max_new_tokens=1000,
50
+ do_sample=False,
51
+ temperature=0,
52
+ eos_token_id=tokenizer.eos_token_id,
53
+ pad_token_id=tokenizer.pad_token_id,
54
+ streamer=streamer
55
+ )
56
+ ```
57
+
58
+ ### Paper
59
+ **Arxiv:** https://arxiv.org/abs/2407.16237
60
+
61
+ Please cite our paper if you use this model.
62
+
63
+ ```
64
+ @article{2024origen,
65
+ title={OriGen: Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection},
66
+ author={Cui, Fan and Yin, Chenyang and Zhou, Kexing and Xiao, Youwei and Sun, Guangyu and Xu, Qiang and Guo, Qipeng and Song, Demin and Lin, Dahua and Zhang, Xingcheng and others},
67
+ journal={arXiv preprint arXiv:2407.16237},
68
+ year={2024}
69
+ }
70
+ ```
figures/evaluation.png ADDED