Model save
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b0
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: segformer-finetuned-biofilm2_train
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# segformer-finetuned-biofilm2_train
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0761
|
19 |
+
- Mean Iou: 0.8665
|
20 |
+
- Mean Accuracy: 0.9765
|
21 |
+
- Overall Accuracy: 0.9745
|
22 |
+
- Accuracy Background: 0.9741
|
23 |
+
- Accuracy Biofilm: 0.9789
|
24 |
+
- Iou Background: 0.9722
|
25 |
+
- Iou Biofilm: 0.7608
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 6e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 1337
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: polynomial
|
50 |
+
- training_steps: 10000
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Biofilm | Iou Background | Iou Biofilm |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
|
56 |
+
| 0.1611 | 1.0 | 298 | 0.1220 | 0.8393 | 0.9547 | 0.9687 | 0.9714 | 0.9379 | 0.9660 | 0.7126 |
|
57 |
+
| 0.07 | 2.0 | 596 | 0.0682 | 0.8795 | 0.9359 | 0.9795 | 0.9881 | 0.8837 | 0.9779 | 0.7811 |
|
58 |
+
| 0.0542 | 3.0 | 894 | 0.0564 | 0.8862 | 0.9735 | 0.9793 | 0.9805 | 0.9666 | 0.9775 | 0.7948 |
|
59 |
+
| 0.0508 | 4.0 | 1192 | 0.0517 | 0.8888 | 0.9728 | 0.9799 | 0.9814 | 0.9643 | 0.9782 | 0.7993 |
|
60 |
+
| 0.0491 | 5.0 | 1490 | 0.0479 | 0.8999 | 0.9727 | 0.9824 | 0.9843 | 0.9611 | 0.9809 | 0.8190 |
|
61 |
+
| 0.0496 | 6.0 | 1788 | 0.0665 | 0.8733 | 0.9728 | 0.9764 | 0.9770 | 0.9686 | 0.9743 | 0.7724 |
|
62 |
+
| 0.047 | 7.0 | 2086 | 0.0475 | 0.8936 | 0.9744 | 0.9810 | 0.9823 | 0.9664 | 0.9793 | 0.8079 |
|
63 |
+
| 0.0403 | 8.0 | 2384 | 0.0513 | 0.8897 | 0.9699 | 0.9803 | 0.9823 | 0.9575 | 0.9786 | 0.8008 |
|
64 |
+
| 0.0336 | 9.0 | 2682 | 0.0597 | 0.8736 | 0.9790 | 0.9761 | 0.9756 | 0.9824 | 0.9740 | 0.7732 |
|
65 |
+
| 0.036 | 10.0 | 2980 | 0.0602 | 0.8789 | 0.9781 | 0.9774 | 0.9773 | 0.9789 | 0.9755 | 0.7824 |
|
66 |
+
| 0.0335 | 11.0 | 3278 | 0.0519 | 0.8849 | 0.9670 | 0.9793 | 0.9818 | 0.9522 | 0.9775 | 0.7923 |
|
67 |
+
| 0.0364 | 12.0 | 3576 | 0.0684 | 0.8718 | 0.9810 | 0.9756 | 0.9745 | 0.9874 | 0.9734 | 0.7702 |
|
68 |
+
| 0.0423 | 13.0 | 3874 | 0.0637 | 0.8767 | 0.9742 | 0.9771 | 0.9777 | 0.9707 | 0.9751 | 0.7783 |
|
69 |
+
| 0.0354 | 14.0 | 4172 | 0.0618 | 0.8773 | 0.9692 | 0.9775 | 0.9791 | 0.9593 | 0.9755 | 0.7790 |
|
70 |
+
| 0.0335 | 15.0 | 4470 | 0.0547 | 0.8788 | 0.9686 | 0.9778 | 0.9797 | 0.9574 | 0.9759 | 0.7816 |
|
71 |
+
| 0.0318 | 16.0 | 4768 | 0.0567 | 0.8841 | 0.9744 | 0.9788 | 0.9797 | 0.9691 | 0.9770 | 0.7913 |
|
72 |
+
| 0.0296 | 17.0 | 5066 | 0.0653 | 0.8678 | 0.9741 | 0.9749 | 0.9751 | 0.9732 | 0.9727 | 0.7628 |
|
73 |
+
| 0.0291 | 18.0 | 5364 | 0.0591 | 0.8757 | 0.9718 | 0.9770 | 0.9780 | 0.9657 | 0.9750 | 0.7765 |
|
74 |
+
| 0.0311 | 19.0 | 5662 | 0.0716 | 0.8682 | 0.9753 | 0.9750 | 0.9749 | 0.9756 | 0.9728 | 0.7637 |
|
75 |
+
| 0.0322 | 20.0 | 5960 | 0.0837 | 0.8506 | 0.9773 | 0.9703 | 0.9690 | 0.9857 | 0.9677 | 0.7335 |
|
76 |
+
| 0.0317 | 21.0 | 6258 | 0.0728 | 0.8673 | 0.9749 | 0.9748 | 0.9747 | 0.9751 | 0.9726 | 0.7621 |
|
77 |
+
| 0.0318 | 22.0 | 6556 | 0.0571 | 0.8796 | 0.9764 | 0.9777 | 0.9779 | 0.9748 | 0.9757 | 0.7835 |
|
78 |
+
| 0.0288 | 23.0 | 6854 | 0.0734 | 0.8689 | 0.9798 | 0.9749 | 0.9739 | 0.9858 | 0.9727 | 0.7651 |
|
79 |
+
| 0.0271 | 24.0 | 7152 | 0.0763 | 0.8615 | 0.9757 | 0.9733 | 0.9728 | 0.9785 | 0.9709 | 0.7521 |
|
80 |
+
| 0.0236 | 25.0 | 7450 | 0.0615 | 0.8789 | 0.9761 | 0.9775 | 0.9778 | 0.9744 | 0.9756 | 0.7823 |
|
81 |
+
| 0.025 | 26.0 | 7748 | 0.0694 | 0.8684 | 0.9768 | 0.9750 | 0.9746 | 0.9790 | 0.9727 | 0.7640 |
|
82 |
+
| 0.0269 | 27.0 | 8046 | 0.0672 | 0.8700 | 0.9688 | 0.9757 | 0.9771 | 0.9605 | 0.9736 | 0.7664 |
|
83 |
+
| 0.0286 | 28.0 | 8344 | 0.0717 | 0.8695 | 0.9761 | 0.9753 | 0.9751 | 0.9771 | 0.9731 | 0.7659 |
|
84 |
+
| 0.0255 | 29.0 | 8642 | 0.0680 | 0.8696 | 0.9757 | 0.9753 | 0.9752 | 0.9761 | 0.9731 | 0.7661 |
|
85 |
+
| 0.0255 | 30.0 | 8940 | 0.0701 | 0.8691 | 0.9756 | 0.9752 | 0.9751 | 0.9762 | 0.9730 | 0.7651 |
|
86 |
+
| 0.0223 | 31.0 | 9238 | 0.0715 | 0.8687 | 0.9746 | 0.9751 | 0.9752 | 0.9740 | 0.9730 | 0.7644 |
|
87 |
+
| 0.0226 | 32.0 | 9536 | 0.0757 | 0.8667 | 0.9770 | 0.9745 | 0.9740 | 0.9799 | 0.9723 | 0.7612 |
|
88 |
+
| 0.022 | 33.0 | 9834 | 0.0773 | 0.8661 | 0.9766 | 0.9744 | 0.9739 | 0.9793 | 0.9721 | 0.7601 |
|
89 |
+
| 0.0217 | 33.56 | 10000 | 0.0761 | 0.8665 | 0.9765 | 0.9745 | 0.9741 | 0.9789 | 0.9722 | 0.7608 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.38.0.dev0
|
95 |
+
- Pytorch 2.0.0+cu117
|
96 |
+
- Datasets 2.14.4
|
97 |
+
- Tokenizers 0.15.1
|