heroza commited on
Commit
b9735c6
·
verified ·
1 Parent(s): 8743d20

Model save

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: segformer-finetuned-biofilm2_train
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # segformer-finetuned-biofilm2_train
15
+
16
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0761
19
+ - Mean Iou: 0.8665
20
+ - Mean Accuracy: 0.9765
21
+ - Overall Accuracy: 0.9745
22
+ - Accuracy Background: 0.9741
23
+ - Accuracy Biofilm: 0.9789
24
+ - Iou Background: 0.9722
25
+ - Iou Biofilm: 0.7608
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 6e-05
45
+ - train_batch_size: 8
46
+ - eval_batch_size: 8
47
+ - seed: 1337
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: polynomial
50
+ - training_steps: 10000
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Biofilm | Iou Background | Iou Biofilm |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
56
+ | 0.1611 | 1.0 | 298 | 0.1220 | 0.8393 | 0.9547 | 0.9687 | 0.9714 | 0.9379 | 0.9660 | 0.7126 |
57
+ | 0.07 | 2.0 | 596 | 0.0682 | 0.8795 | 0.9359 | 0.9795 | 0.9881 | 0.8837 | 0.9779 | 0.7811 |
58
+ | 0.0542 | 3.0 | 894 | 0.0564 | 0.8862 | 0.9735 | 0.9793 | 0.9805 | 0.9666 | 0.9775 | 0.7948 |
59
+ | 0.0508 | 4.0 | 1192 | 0.0517 | 0.8888 | 0.9728 | 0.9799 | 0.9814 | 0.9643 | 0.9782 | 0.7993 |
60
+ | 0.0491 | 5.0 | 1490 | 0.0479 | 0.8999 | 0.9727 | 0.9824 | 0.9843 | 0.9611 | 0.9809 | 0.8190 |
61
+ | 0.0496 | 6.0 | 1788 | 0.0665 | 0.8733 | 0.9728 | 0.9764 | 0.9770 | 0.9686 | 0.9743 | 0.7724 |
62
+ | 0.047 | 7.0 | 2086 | 0.0475 | 0.8936 | 0.9744 | 0.9810 | 0.9823 | 0.9664 | 0.9793 | 0.8079 |
63
+ | 0.0403 | 8.0 | 2384 | 0.0513 | 0.8897 | 0.9699 | 0.9803 | 0.9823 | 0.9575 | 0.9786 | 0.8008 |
64
+ | 0.0336 | 9.0 | 2682 | 0.0597 | 0.8736 | 0.9790 | 0.9761 | 0.9756 | 0.9824 | 0.9740 | 0.7732 |
65
+ | 0.036 | 10.0 | 2980 | 0.0602 | 0.8789 | 0.9781 | 0.9774 | 0.9773 | 0.9789 | 0.9755 | 0.7824 |
66
+ | 0.0335 | 11.0 | 3278 | 0.0519 | 0.8849 | 0.9670 | 0.9793 | 0.9818 | 0.9522 | 0.9775 | 0.7923 |
67
+ | 0.0364 | 12.0 | 3576 | 0.0684 | 0.8718 | 0.9810 | 0.9756 | 0.9745 | 0.9874 | 0.9734 | 0.7702 |
68
+ | 0.0423 | 13.0 | 3874 | 0.0637 | 0.8767 | 0.9742 | 0.9771 | 0.9777 | 0.9707 | 0.9751 | 0.7783 |
69
+ | 0.0354 | 14.0 | 4172 | 0.0618 | 0.8773 | 0.9692 | 0.9775 | 0.9791 | 0.9593 | 0.9755 | 0.7790 |
70
+ | 0.0335 | 15.0 | 4470 | 0.0547 | 0.8788 | 0.9686 | 0.9778 | 0.9797 | 0.9574 | 0.9759 | 0.7816 |
71
+ | 0.0318 | 16.0 | 4768 | 0.0567 | 0.8841 | 0.9744 | 0.9788 | 0.9797 | 0.9691 | 0.9770 | 0.7913 |
72
+ | 0.0296 | 17.0 | 5066 | 0.0653 | 0.8678 | 0.9741 | 0.9749 | 0.9751 | 0.9732 | 0.9727 | 0.7628 |
73
+ | 0.0291 | 18.0 | 5364 | 0.0591 | 0.8757 | 0.9718 | 0.9770 | 0.9780 | 0.9657 | 0.9750 | 0.7765 |
74
+ | 0.0311 | 19.0 | 5662 | 0.0716 | 0.8682 | 0.9753 | 0.9750 | 0.9749 | 0.9756 | 0.9728 | 0.7637 |
75
+ | 0.0322 | 20.0 | 5960 | 0.0837 | 0.8506 | 0.9773 | 0.9703 | 0.9690 | 0.9857 | 0.9677 | 0.7335 |
76
+ | 0.0317 | 21.0 | 6258 | 0.0728 | 0.8673 | 0.9749 | 0.9748 | 0.9747 | 0.9751 | 0.9726 | 0.7621 |
77
+ | 0.0318 | 22.0 | 6556 | 0.0571 | 0.8796 | 0.9764 | 0.9777 | 0.9779 | 0.9748 | 0.9757 | 0.7835 |
78
+ | 0.0288 | 23.0 | 6854 | 0.0734 | 0.8689 | 0.9798 | 0.9749 | 0.9739 | 0.9858 | 0.9727 | 0.7651 |
79
+ | 0.0271 | 24.0 | 7152 | 0.0763 | 0.8615 | 0.9757 | 0.9733 | 0.9728 | 0.9785 | 0.9709 | 0.7521 |
80
+ | 0.0236 | 25.0 | 7450 | 0.0615 | 0.8789 | 0.9761 | 0.9775 | 0.9778 | 0.9744 | 0.9756 | 0.7823 |
81
+ | 0.025 | 26.0 | 7748 | 0.0694 | 0.8684 | 0.9768 | 0.9750 | 0.9746 | 0.9790 | 0.9727 | 0.7640 |
82
+ | 0.0269 | 27.0 | 8046 | 0.0672 | 0.8700 | 0.9688 | 0.9757 | 0.9771 | 0.9605 | 0.9736 | 0.7664 |
83
+ | 0.0286 | 28.0 | 8344 | 0.0717 | 0.8695 | 0.9761 | 0.9753 | 0.9751 | 0.9771 | 0.9731 | 0.7659 |
84
+ | 0.0255 | 29.0 | 8642 | 0.0680 | 0.8696 | 0.9757 | 0.9753 | 0.9752 | 0.9761 | 0.9731 | 0.7661 |
85
+ | 0.0255 | 30.0 | 8940 | 0.0701 | 0.8691 | 0.9756 | 0.9752 | 0.9751 | 0.9762 | 0.9730 | 0.7651 |
86
+ | 0.0223 | 31.0 | 9238 | 0.0715 | 0.8687 | 0.9746 | 0.9751 | 0.9752 | 0.9740 | 0.9730 | 0.7644 |
87
+ | 0.0226 | 32.0 | 9536 | 0.0757 | 0.8667 | 0.9770 | 0.9745 | 0.9740 | 0.9799 | 0.9723 | 0.7612 |
88
+ | 0.022 | 33.0 | 9834 | 0.0773 | 0.8661 | 0.9766 | 0.9744 | 0.9739 | 0.9793 | 0.9721 | 0.7601 |
89
+ | 0.0217 | 33.56 | 10000 | 0.0761 | 0.8665 | 0.9765 | 0.9745 | 0.9741 | 0.9789 | 0.9722 | 0.7608 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.38.0.dev0
95
+ - Pytorch 2.0.0+cu117
96
+ - Datasets 2.14.4
97
+ - Tokenizers 0.15.1