File size: 14,545 Bytes
32b542e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import itertools
import logging
import numpy as np
import operator
import pickle
from tabulate import tabulate
from termcolor import colored
import torch
import torch.utils.data
from torch.utils.data import RandomSampler
from torch.utils.data.distributed import DistributedSampler
from uniperceiver.config import configurable
from uniperceiver.utils.comm import get_world_size, get_rank
from uniperceiver.utils.env import seed_all_rng
from uniperceiver.utils.file_io import PathManager
from uniperceiver.utils.logger import log_first_n
from uniperceiver.utils.registry import Registry
from .common import DatasetFromList, MapDataset
from uniperceiver.functional import pad_tensor, dict_to_cuda, flat_list_of_lists
from .sampler import NodeDistributedSampler
from uniperceiver.utils import comm
from .sampler import TrainingSampler, NaiveSampler
from .moe_embeddings import get_moe_embedding, get_embed_with_task_type, get_embed_with_shared_tagert_name
from functools import partial
DATASETS_REGISTRY = Registry("DATASETS") # noqa F401 isort:skip
DATASETS_REGISTRY.__doc__ = """
Registry for datasets, i.e. the whole model
"""
from uniperceiver.datasets.unified_dataset import UnifiedDataset
from .batch_sampler import WeightedBatchSampler
def build_dataset_mapper(cfg, name, stage):
dataset_mapper = DATASETS_REGISTRY.get(name)(cfg, stage)
return dataset_mapper
def trivial_batch_collator(batch):
return batch
def preprocess_batch_collator(batched_inputs, cfg=dict(), shared_targets=dict()):
ret = {}
if cfg.MOE.MOE:
moe_type = cfg.MOE.MOE_TYPE
else:
moe_type = None
# sample lists
for data_name in ['input_sample', 'target_sample']:
ret[(data_name + '_list')] = []
num_data = len(batched_inputs[0][data_name])
for i in range(num_data):
# All samples in data_list can be either be Tensors or groups (i.e., list of Tensors, [Tensors]).
# If the samples in data_list are groups, each element in each group will be padded individually, and then all elements in the same group will be concatenated along axis 1.
data_list = [sample[data_name][i]['data'] for sample in batched_inputs]
# valid_mask_list = [sample[data_name][i]['valid_mask'] for sample in batched_inputs]
modality = batched_inputs[0][data_name][i]['modality']
data_type = batched_inputs[0][data_name][i]['data_type']
sample_info_list = [sample[data_name][i]['sample_info'] for sample in batched_inputs]
padding_value = sample_info_list[0].get('padding_value', 0)
if isinstance(data_list[0], list):
if not batched_inputs[0][data_name][i]['sample_info'].get('sample_alone', False):
# some data are concatenated inside one sample, e.g. the caption text part during the training.
data_group_size = len(data_list[0])
# padding individually for each element in each group
data_, valid_mask_ = zip(*[pad_tensor(
tensor=[data_group[idx] for data_group in data_list],
padding_value=padding_value,
use_mask=True) for idx in range(data_group_size)])
# concatenate all elements in the same group along axis 1
data = torch.cat(data_, dim=1)
valid_mask = torch.cat(valid_mask_, dim=1)
else:
# image-text retrieval may have multi-caption for one image when inference, e.g., MSCOCO caption dataset.
data_list = flat_list_of_lists(data_list)
data, valid_mask = pad_tensor(tensor=data_list, padding_value=padding_value, use_mask=True)
elif isinstance(data_list[0], torch.Tensor):
if sample_info_list[0].get('cat_along_first_dim', False):
# concatenate data along the first dimention, e.g.: video data
data = torch.cat(data_list, dim=0)
valid_mask = None
else:
data, valid_mask = pad_tensor(tensor=data_list, padding_value=padding_value, use_mask=True) # Do we have valid mask that is not caused by padding? AND 1/0 for what?
else:
raise TypeError
if valid_mask is not None and valid_mask.all():
valid_mask = None
ret[(data_name + '_list')].append({
'data':
data,
'invalid_mask':
1 - valid_mask if valid_mask is not None else None,
'modality':
modality,
'data_type':
data_type,
'sample_info':
sample_info_list,
'moe_embedding':
get_embed_with_task_type(moe_type, batched_inputs[0]['task_info']['task_type'], data_type)
})
# target sets
num_target_sets = len(batched_inputs[0]['target_idx'])
# change value to -1 for padding location
ret['target_idx_list'] = [ pad_tensor(tensor=[sample['target_idx'][i] for sample in batched_inputs], padding_value=-1, use_mask=False) if isinstance(batched_inputs[0]['target_idx'][i], torch.Tensor) else torch.tensor([sample['target_idx'][i] for sample in batched_inputs] ) for i in range(num_target_sets) ]
ret['target_set_list'] = [batched_inputs[0]['target_set'][i] for i in range(num_target_sets)]
# shared target sets
ret['shared_target_sets'] = {}
for k in shared_targets:
padding_value = shared_targets[k]['sample_info'].get('padding_value', 0)
if isinstance(shared_targets[k]['data'][0], list):
data_list = [d[np.random.randint(0, len(d))] for d in shared_targets[k]['data']] # Randomly choose one for each list
else:
data_list = shared_targets[k]['data']
data, valid_mask = pad_tensor(tensor=data_list, padding_value=padding_value, use_mask=True)
if valid_mask.all():
valid_mask = None
ret['shared_target_sets'][k] = [{
'data': data,
'invalid_mask': 1 - valid_mask if valid_mask is not None else None,
'modality': shared_targets[k]['modality'],
'data_type': 'target',
'sample_info': shared_targets[k]['sample_info'],
'moe_embedding': get_embed_with_shared_tagert_name(moe_type, k)
}]
# task info
ret['task_info'] = batched_inputs[0]['task_info'] # should task_name be put into task_info?
ret['task_info']['task_name'] = batched_inputs[0].get('task_name', None)
return ret
def worker_init_reset_seed(worker_id):
seed_all_rng(np.random.randint(2 ** 31) + worker_id)
def load_pkl_file(filepath):
return pickle.load(open(filepath, 'rb'), encoding='bytes') if len(filepath) > 0 else None
def load_shared_targets(cfg, stage='train'):
shared_targets_cfg = cfg.SHARED_TARGETS
shared_targets = {}
for shared_target_cfg in shared_targets_cfg:
name = shared_target_cfg['NAME']
if (stage != 'train') and (name not in cfg.DATASETS.TARGET_SET):
# For validation and test, we build a dataloader for each task / dataset.
# Therefore, the dataloader only needs to load its corresponding shared target set.
continue
# For validation and test, we do not distribute the shared targets
distributed = shared_target_cfg['SHARED_TARGETS_CFG']['DISTRIBUTED'] and (stage == 'train')
shared_targets[name] = load_pkl_file(shared_target_cfg['SHARED_TARGETS_CFG']['FILE_PATH'])
data = shared_targets[name]['data']
if isinstance(data[0], list):
max_len = max([len(t) for tl in data for t in tl])
else:
max_len = max([len(t) for t in data])
shared_targets[name]['sample_info'] = {'distributed': distributed, 'max_len': max_len}
if distributed:
world_size = get_world_size()
rank = get_rank()
total_num = len(shared_targets[name]['data'])
local_num = int(np.ceil(total_num / world_size))
# we pad the shared_targets to a value that can be divided by WORLD_SIZE with no remainer, and then slice it
if local_num * world_size > total_num:
data = data + [data[0] for _ in range(local_num * world_size - total_num)]
shared_targets[name]['data'] = data[rank * local_num : (rank + 1) * local_num]
# compute the real (unpadded) length of the local slice
start_idx = min(rank * local_num, total_num)
end_idx = min((rank + 1) * local_num, total_num)
shared_targets[name]['sample_info'].update({
'total_num': total_num,
'local_num': end_idx - start_idx,
'world_size': world_size,
'rank': rank
})
return shared_targets
def build_unified_train_loader(cfg, task_cfg, model=None):
dataset = UnifiedDataset(cfg, task_cfg, stage="train")
batchsampler = WeightedBatchSampler(dataset, cfg, task_cfg)
shared_targets = load_shared_targets(cfg)
dataloader = torch.utils.data.DataLoader(
dataset=dataset,
batch_sampler=batchsampler,
# sampler=sampler,
# batch_size=cfg.DATALOADER.TRAIN_BATCH_SIZE,
num_workers=cfg.DATALOADER.NUM_WORKERS,
collate_fn=partial(preprocess_batch_collator, shared_targets=shared_targets, cfg=cfg),
pin_memory=cfg.DATALOADER.PIN_MEM,
worker_init_fn=worker_init_reset_seed,
# drop_last=True,
prefetch_factor=cfg.DATALOADER.PREFETCH_FACTOR, # default: 2
persistent_workers=cfg.DATALOADER.NUM_WORKERS>0)
return dataloader
def build_standard_train_loader(cfg, model=None):
dataset = build_dataset_mapper(cfg, name=cfg.DATASETS.TRAIN, stage="train")
if cfg.DATASETS.TRAIN in [ "ImageTextPairDataset", "ImageNet22KDataset", "ImageNetDataset", "VGPretrain", "VideoDataSet", "VQADataset" ]:
sampler = TrainingSampler(dataset)
elif cfg.DATASETS.TRAIN in ["GeneralCorpusDataset"]:
sampler = NaiveSampler(dataset)
else:
sampler = NodeDistributedSampler(
dataset, shuffle=True,
num_replicas=comm.get_world_size(), rank=comm.get_rank(),
local_rank=comm.get_local_rank(), local_size=comm.get_local_size())
# sampler = TrainingSampler(dataset)
dataloader = torch.utils.data.DataLoader(
dataset=dataset,
sampler=sampler,
batch_size=cfg.DATALOADER.TRAIN_BATCH_SIZE,
num_workers=cfg.DATALOADER.NUM_WORKERS,
collate_fn=partial(preprocess_batch_collator, model=model),
pin_memory=cfg.DATALOADER.PIN_MEM,
worker_init_fn=worker_init_reset_seed,
drop_last=True,
persistent_workers=True)
return dataloader
def _single_modal_dataset(cfg, dataset_mapper=None, *, datalist=None, sampler=None):
if len(cfg.DATASETS.TRAIN) > 0:
if dataset_mapper is None:
dataset_mapper = build_dataset_mapper(cfg, name=cfg.DATASETS.TRAIN, stage="train")
if datalist is None:
datalist = dataset_mapper.load_data(cfg)
else:
dataset_mapper = None
datalist = None
return datalist, dataset_mapper
def _train_loader_from_config(cfg,
dataset_mapper=None,
*,
datalist=None,
sampler=None,
model=None):
# xiaoshi: mscoco image captioning: called from defaulttainer, only cfg passed
datalist, dataset_mapper = _single_modal_dataset(
cfg, dataset_mapper=dataset_mapper, datalist=datalist, sampler=sampler)
return {
"datalist": datalist,
"dataset_mapper": dataset_mapper,
"num_workers": cfg.DATALOADER.NUM_WORKERS,
"batch_size": cfg.DATALOADER.TRAIN_BATCH_SIZE,
"cfg": cfg,
"model": model,
}
def _valtest_loader_from_config(cfg, dataset_mapper=None, *, datalist=None, sampler=None, stage="val"):
dataset_names = {
"val": cfg.DATASETS.VAL,
"test": cfg.DATASETS.TEST,
}
dataset_name = dataset_names[stage]
if len(dataset_name) > 0:
if dataset_mapper is None:
dataset_mapper = build_dataset_mapper(cfg, name=dataset_name, stage=stage)
if datalist is None:
datalist = dataset_mapper.load_data(cfg)
else:
dataset_mapper = None
datalist = None
if dataset_name in ['Flickr30kDatasetForSingleStreamVal', 'Flickr30kDatasetForSingleStreamValV2']:
multi_gpu_eval = True
batch_size = 1
else:
multi_gpu_eval = False
batch_size = cfg.DATALOADER.TEST_BATCH_SIZE
return {
"datalist": datalist,
"dataset_mapper": dataset_mapper,
"num_workers": cfg.DATALOADER.NUM_WORKERS,
"batch_size": batch_size,
"multi_gpu_eval": multi_gpu_eval,
"cfg": cfg,
"stage": stage
}
def build_standard_valtest_loader(cfg, task_cfg, stage, multi_gpu_eval):
dataset_names = {
"val": cfg.DATASETS.VAL,
"test": cfg.DATASETS.TEST,
}
dataset_name = dataset_names[stage]
if len(dataset_name) > 0:
dataset = build_dataset_mapper(cfg, name=dataset_name, stage=stage)
else:
return None
shared_targets = load_shared_targets(cfg, stage=stage)
if multi_gpu_eval and get_world_size() > 1:
# multi-gpu-eval for single stream retrieval
sampler = DistributedSampler(dataset, shuffle=True)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=cfg.DATALOADER.TEST_BATCH_SIZE,
num_workers=cfg.DATALOADER.NUM_WORKERS,
drop_last=False,
sampler=sampler,
collate_fn=partial(preprocess_batch_collator, shared_targets=shared_targets, cfg=cfg),
pin_memory=cfg.DATALOADER.PIN_MEM,
)
else:
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=cfg.DATALOADER.TEST_BATCH_SIZE,
num_workers=cfg.DATALOADER.NUM_WORKERS,
drop_last=False,
shuffle=False,
collate_fn=partial(preprocess_batch_collator, shared_targets=shared_targets, cfg=cfg),
pin_memory=cfg.DATALOADER.PIN_MEM,
)
return data_loader |