File size: 13,650 Bytes
32b542e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import os
import copy
import pickle
from PIL import Image
import torch
from torchvision import transforms
import random
from torchvision.transforms.transforms import ToTensor
from tqdm import tqdm
import numpy as np
from uniperceiver.config import configurable
from uniperceiver.functional import read_np, dict_as_tensor, boxes_to_locfeats
from ..build import DATASETS_REGISTRY
import glob
import json
from collections import defaultdict

from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import create_transform
import pyarrow as pa
from uniperceiver.utils import comm

__all__ = ["ImageNetDataset", "ImageNet22KDataset"]


def load_pkl_file(filepath):
    return pickle.load(open(filepath, 'rb'), encoding='bytes') if len(filepath) > 0 else None

@DATASETS_REGISTRY.register()
class ImageNetDataset:
    @configurable
    def __init__(
        self,
        stage: str,
        anno_file: str,
        s3_path: str,
        feats_folder: str,
        class_names: list,
        use_ceph: bool,
        tcs_conf_path,
        data_percentage,
        task_info,
        target_set,
        cfg,
    ):
        self.stage = stage
        self.ann_file = anno_file
        self.feats_folder = feats_folder
        self.class_names = class_names if (class_names is not None) else None
        self.data_percentage = data_percentage

        self.initialized = False

        self.cfg = cfg

        self.task_info = task_info
        self.target_set = target_set
        # for index_maping
        self.idx2info = dict()

        self.use_ceph = use_ceph
        if self.use_ceph:
            self.feats_folder = s3_path
            print('debug info for imagenet{}  {}'.format(self.ann_file, self.feats_folder))
            from uniperceiver.datasets import TCSLoader
            self.tcs_loader = TCSLoader(tcs_conf_path)
           
        self.transform = build_transform(is_train=(self.stage == 'train'),
                                         input_size=cfg.MODEL.IMG_INPUT_SIZE)

        _temp_list =self.load_data(self.cfg)
        self.datalist = pa.array(_temp_list)
        if comm.is_main_process():
            import sys
            print("ImageNet1K Pretrain Dataset:")
            print('!!! length of _temp_list: ', len(_temp_list))
            print('!!! size of _temp_list: ', sys.getsizeof(_temp_list))
            print('!!! size of pa database: ', sys.getsizeof(self.datalist))
        del _temp_list

    @classmethod
    def from_config(cls, cfg, stage: str = "train"):
        if 'SLURM_PROCID' in os.environ:
            tcs_conf_path = cfg.DATALOADER.get("TCS_CONF_PATH", "slurm_tools/petreloss.config")
        else:
            # dev machine
            tcs_conf_path = "slurm_tools/petreloss_local.config"
        ann_files = {
            "train": os.path.join(cfg.DATALOADER.ANNO_FOLDER, "train.txt"),
            "val": os.path.join(cfg.DATALOADER.ANNO_FOLDER, "val.txt"),
            "test": os.path.join(cfg.DATALOADER.ANNO_FOLDER, "test.txt")
        }

        task_info = {
            'task_type'      : cfg.DATASETS.TASK_TYPE,
            'dataset_name'   : cfg.DATASETS.DATASET_NAME,
            'batch_size'     : cfg.DATALOADER.TRAIN_BATCH_SIZE if stage == 'train' else cfg.DATALOADER.TEST_BATCH_SIZE,
            'sampling_weight': cfg.DATALOADER.SAMPLING_WEIGHT
        }


        ret = {
            "cfg"            : cfg,
            "stage"          : stage,
            "anno_file"      : ann_files[stage],
            "feats_folder"   : cfg.DATALOADER.FEATS_FOLDER,
            's3_path'        : cfg.DATALOADER.S3_PATH,
            "class_names"    : load_pkl_file(cfg.DATALOADER.CLASS_NAME_FILE) if cfg.DATALOADER.CLASS_NAME_FILE else None,
            "use_ceph"       : getattr(cfg.DATALOADER, 'USE_CEPH', False),
            "tcs_conf_path"  : tcs_conf_path,
            "data_percentage": cfg.DATALOADER.DATA_PERCENTAGE,
            "task_info"      : task_info,
            "target_set"     : cfg.DATASETS.TARGET_SET
        }

        return ret

    def _preprocess_datalist(self, datalist):
        return datalist

    def load_data(self, cfg):
        datalist = []

        # local file reading
        with open(self.ann_file, 'r') as f:
            img_infos = f.readlines()

        if self.stage == "train" and self.data_percentage < 1.0:
            id2img = dict()
            for idx, l in enumerate(img_infos):
                name = int(l.replace('\n', '').split(' ')[1])
                if name not in id2img:
                    id2img[name] = list()
                id2img[name].append(idx)
                self.idx2info[idx] = l.replace('\n', '').split(' ')[0]

            datalist = list()
            for k, v in id2img.items():
                for idx in random.sample(v, k=int(len(v)*self.data_percentage)+1):
                    datalist.append({
                        'image_id': idx,
                        'class_id': k,
                        "file_path": self.idx2info[idx],
                    })
        else:
            datalist = [{
                'image_id': idx,
                'class_id': int(l.replace('\n', '').split(' ')[1]),
                "file_path": l.replace('\n', '').split(' ')[0],
            } for idx, l in enumerate(img_infos)]

        datalist = self._preprocess_datalist(datalist)
        return datalist

    def __len__(self):
        return len(self.datalist)

    def __getitem__(self, index):
        for i_try in range(100):
            try:
                dataset_dict =self.datalist[index].as_py()
                image_id = dataset_dict['image_id']
                class_id = dataset_dict['class_id']
                image_name = dataset_dict['file_path']

                # load image
                image_path = os.path.join(self.feats_folder, self.stage, image_name)

                if self.use_ceph:
                    img = self.tcs_loader(image_path).convert('RGB')

                else:
                    img = Image.open(image_path).convert("RGB")


            except Exception as e:
                print(
                    "Failed to load image from {} with error {} ; trial {}".format(
                        image_path, e, i_try
                    )
                )

                # let's try another one
                index = random.randint(0, len(self.datalist) - 1)
                continue


            img = self.transform(img)


            ret = {
                'input_sample' : [{
                        'data'        : img, 
                        'invalid_mask': None,
                        'modality'    : 'image', 
                        'data_type': 'input',
                        'sample_info' : {
                            'id'  : image_id,
                            'path': image_path
                            }
                    }],
                'target_sample': [],
                'target_idx'   : [class_id],
                'target_set'   : copy.deepcopy(self.target_set),
                'task_info'    : copy.deepcopy(self.task_info)

            }
            return ret




@DATASETS_REGISTRY.register()
class ImageNet22KDataset:
    @configurable
    def __init__(
        self,
        stage: str,
        anno_file: str,
        s3_path: str, 
        feats_folder: str,
        use_ceph: bool,
        tcs_conf_path: str,
        cfg: str,
        task_info,
        target_set,
    ):
        self.cfg = cfg
        self.stage = stage
        self.ann_file = anno_file
        self.feats_folder = feats_folder
        self.task_info = task_info
        self.target_set = target_set
        self.initialized = False

        self.use_ceph = use_ceph
        if self.use_ceph:
            self.feats_folder = s3_path
            print('debug info for imagenet22k {}  {}'.format(self.ann_file, self.feats_folder))
            from uniperceiver.datasets import TCSLoader
            self.tcs_loader = TCSLoader(tcs_conf_path)


        self.transform = build_transform(is_train=(self.stage == 'train'),
                                         input_size=cfg.MODEL.IMG_INPUT_SIZE)

        _temp_list = self.load_data(self.cfg)
        self.datalist = pa.array(_temp_list)
        if comm.is_main_process():
            import sys
            print("ImageNet22K Pretrain Dataset:")
            print('!!! length of _temp_list: ', len(_temp_list))
            print('!!! size of _temp_list: ', sys.getsizeof(_temp_list))
            print('!!! size of pa database: ', sys.getsizeof(self.datalist))
        del _temp_list


    @classmethod
    def from_config(cls, cfg, stage: str = "train"):
    
        ann_files = {
            "train": os.path.join(cfg.DATALOADER.ANNO_FOLDER, "imagenet_22k_filelist_short.txt"),
            "val": os.path.join(cfg.DATALOADER.ANNO_FOLDER, "imagenet_22k_filelist_short.txt"),
        }


        if 'SLURM_PROCID' in os.environ:
            tcs_conf_path = cfg.DATALOADER.get("TCS_CONF_PATH", "slurm_tools/petreloss.config")
        else:
            # dev machine
            tcs_conf_path = "slurm_tools/petreloss_local.config"

        task_info = {
            'task_type'      : cfg.DATASETS.TASK_TYPE,
            'dataset_name'   : cfg.DATASETS.DATASET_NAME,
            'batch_size'     : cfg.DATALOADER.TRAIN_BATCH_SIZE if stage == 'train' else cfg.DATALOADER.TEST_BATCH_SIZE,
            'sampling_weight': cfg.DATALOADER.SAMPLING_WEIGHT
        }

        ret = {
            "cfg"          : cfg,
            "stage"        : stage,
            "anno_file"    : ann_files[stage],
            's3_path'      : cfg.DATALOADER.S3_PATH,
            "feats_folder" : cfg.DATALOADER.FEATS_FOLDER,
            "use_ceph"     : getattr(cfg.DATALOADER, 'USE_CEPH', False),
            "tcs_conf_path": tcs_conf_path,
            "task_info"    : task_info,
            "target_set"   : cfg.DATASETS.TARGET_SET
        }

        return ret

    def _preprocess_datalist(self, datalist):
        return datalist

    def load_data(self, cfg):
        datalist = []

        # local file reading
        with open(self.ann_file, 'r') as f:
            img_infos = f.readlines()

        datalist = []
        for idx, l in enumerate(img_infos):
            info_strip = l.replace('\n', '').split(' ')
            wn_id = info_strip[0]
            class_id = info_strip[2]
            file_path = wn_id + '/' + wn_id + '_' + info_strip[1] + '.JPEG'  # n01440764/n01440764_10074.JPEG

            datalist.append(
                {
                    'image_id': idx,
                    'file_path': file_path,
                    'class_id': int(class_id)
                }
            )

        datalist = self._preprocess_datalist(datalist)
        return datalist

    def __len__(self):
        return len(self.datalist)

    def __getitem__(self, index):
        for i_try in range(100):
            try:
                dataset_dict =self.datalist[index].as_py()
                image_id = dataset_dict['image_id']
                class_id = dataset_dict['class_id']
                image_name = dataset_dict['file_path']

                # load image
                image_path = os.path.join(self.feats_folder, image_name)

                if self.use_ceph:
                    img = self.tcs_loader(image_path).convert('RGB')

                else:
                    img = Image.open(image_path).convert("RGB")
               

            except Exception as e:
                print(
                    "Failed to load image from {} with error {} ; trial {}".format(
                        image_path, e, i_try
                    )
                )

                # let's try another one
                index = random.randint(0, len(self.datalist) - 1)
                continue

            img = self.transform(img)

            ret = {
                'input_sample': [{
                        'data'        : img, 
                        'invalid_mask': None, 
                        'modality'    : 'image', 
                        'data_type': 'input',
                        'sample_info' : {
                            'id'  : image_id, 
                            'path': image_path
                            }
                    }],
                'target_sample': [],
                'target_idx'   : [class_id],
                'target_set'   : copy.deepcopy(self.target_set),
                'task_info'    : copy.deepcopy(self.task_info)
            }

            return ret



def build_transform(is_train,
                    input_size=224,
                    color_jitter=0.4,
                    auto_augment='rand-m9-mstd0.5-inc1',
                    train_interpolation='bicubic',
                    re_prob=0.25,
                    re_mode='pixel',
                    re_count=1
                   ):
    if is_train:
        # this should always dispatch to transforms_imagenet_train
        transform = create_transform(
            input_size=input_size,
            is_training=True,
            color_jitter=color_jitter,
            auto_augment=auto_augment,
            interpolation=train_interpolation,
            re_prob=re_prob,
            re_mode=re_mode,
            re_count=re_count
        )

        return transform

    t = []
    size = int((256 / 224) * input_size)
    t.append(
        transforms.Resize(size, interpolation=3),  # to maintain same ratio w.r.t. 224 images
    )
    t.append(transforms.CenterCrop(input_size))

    t.append(transforms.ToTensor())
    t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
    return transforms.Compose(t)