File size: 19,596 Bytes
32b542e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import os
import copy
import pickle
from PIL import Image
from torchvision import transforms
import random
from torchvision.transforms.transforms import ToTensor
from tqdm import tqdm
import numpy as np
from uniperceiver.config import configurable
from uniperceiver.functional import read_np, dict_as_tensor, boxes_to_locfeats
from ..build import DATASETS_REGISTRY
import glob
from uniperceiver.tokenization import ClipTokenizer
import json
from collections import defaultdict
from uniperceiver.datasets.custom_transforms import clip_transforms
import pyarrow as pa
from uniperceiver.utils import comm

__all__ = ["ImageTextPairDataset"]

memorycache = False

@DATASETS_REGISTRY.register()
class ImageTextPairDataset:
    @configurable
    def __init__(
        self,
        cfg: str,
        stage: str,
        anno_file: str,
        seq_per_img: int,
        max_seq_len: int,
        feats_folder: str,
        relation_file: str,
        gv_feat_file: str,
        attribute_file: str,
        transform,
        tokenizer,
        data_percentage,
        tokenizer_name,
        use_ceph: bool,
        tcs_conf_path,
        task_type,
        preload_feats = None,
        random_mask=False,
        text_type_id=0,
    ):
        assert len(task_type)>0
        self.cfg = cfg
        self.stage = stage
        self.anno_file = anno_file
        self.seq_per_img = seq_per_img
        assert self.seq_per_img == 1
        self.use_ceph = use_ceph
        self.task_type = task_type
        if self.use_ceph:
            self.feats_folder = 's3://coco'
            print('debug info for coco pretrain: {} '.format(self.feats_folder))
            from uniperceiver.datasets import TCSLoader
            if 'SLURM_PROCID' in os.environ:
                self.tcs_loader = TCSLoader(tcs_conf_path)
            else:
                self.tcs_loader = TCSLoader('petreloss_local.config')
        else:
            # local image folder
            self.feats_folder = feats_folder
        self.max_seq_len = max_seq_len
        self.relation_file = relation_file
        self.gv_feat_file = gv_feat_file
        self.attribute_file = attribute_file

        self.data_percentage = data_percentage
        self.tokenizer = tokenizer
        self.tokenizer_name = tokenizer_name
        self.use_clip_tokenizer = tokenizer_name == 'clip'

        self.initialized = False
        self.transform = transform

        self.loaded_feats = None
        if preload_feats:
            self.loaded_feats = self.pre_load_feats(preload_feats)

        # for index_maping
        self.idx2name = dict()
        self.name2idx = dict()
        # please
        if isinstance(self.anno_file, list):
            imageinfo = list()
            for anno_file in self.anno_file:
                imageinfo.extend(json.load(open(anno_file))["images"])
        else:
            imageinfo = json.load(open(self.anno_file))["images"]
        for info in imageinfo:
            self.idx2name[info['id']] = {
                "split": info['file_path'],
                "name": info['file_name']}
            self.name2idx[info['file_name']] = info['id']
        self.random_mask = random_mask

        self.text_type_id = text_type_id

        self.task_info = {
                'task_type'      : self.cfg.DATASETS.TASK_TYPE,
                'dataset_name'   : self.cfg.DATASETS.DATASET_NAME,
                'batch_size'     : self.cfg.DATALOADER.TRAIN_BATCH_SIZE
                                  if self.stage == 'train' else self.cfg.DATALOADER.TEST_BATCH_SIZE,
                'sampling_weight': self.cfg.DATALOADER.SAMPLING_WEIGHT
            }

        _temp_list =self.load_data(self.cfg)
        self.database = pa.array(_temp_list)
        if comm.is_main_process():
            import sys
            print("MSCOCO Pretrain Dataset:")
            print('!!! length of _temp_list: ', len(_temp_list))
            print('!!! size of _temp_list: ', sys.getsizeof(_temp_list))
            print('!!! size of pa database: ', sys.getsizeof(self.database))
        del _temp_list


    def pre_load_feats(self, preload_feat_folder):
        loaded_feats = {}
        file_list = glob.glob(os.path.join(preload_feat_folder, '*.pkl'))
        for fname in file_list:
            with open(fname, 'rb') as f:
                feats = pickle.load(f)
                loaded_feats.update(feats)
        return loaded_feats

    @classmethod
    def from_config(cls, cfg, stage: str = "train"):
        if 'SLURM_PROCID' in os.environ:
            tcs_conf_path = cfg.DATALOADER.get("TCS_CONF_PATH", "petreloss.config")
        else:
            # dev machine
            tcs_conf_path = "slurm_tools/petreloss_local.config"
        ann_files = {
            "train": [os.path.join(cfg.DATALOADER.ANNO_FOLDER, "captions_train113k.json"), os.path.join(cfg.DATALOADER.ANNO_FOLDER, "captions_val5k.json")],
            # no validation
            "test": os.path.join(cfg.DATALOADER.ANNO_FOLDER, "captions_test5k.json")
        }
        if getattr(cfg.DATALOADER, 'TRANSFORM', None) == 'clip_transforms':
            transform = clip_transforms(stage,
                                        img_size=cfg.MODEL.IMG_INPUT_SIZE)
        else:
            transform = transforms.Compose([
            transforms.Resize([224, 224]),
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406),
                                (0.229, 0.224, 0.225))]
            )
        ret = {
            "cfg"            : cfg,
            "stage"          : stage,
            "anno_file"      : ann_files[stage],
            "seq_per_img"    : 1,
            "feats_folder"   : cfg.DATALOADER.FEATS_FOLDER,
            "relation_file"  : cfg.DATALOADER.RELATION_FILE,
            "gv_feat_file"   : cfg.DATALOADER.GV_FEAT_FILE,
            "attribute_file" : cfg.DATALOADER.ATTRIBUTE_FILE,
            "max_seq_len"    : cfg.MODEL.MAX_SEQ_LEN,
            "use_ceph"       : getattr(cfg.DATALOADER, 'USE_CEPH', False),
            "tcs_conf_path"  : tcs_conf_path,
            "transform"      : transform,
            'task_type'      : cfg.DATASETS.TASK_TYPE,
            "random_mask"    : getattr(cfg.DATALOADER, 'RANDOM_MASK', False),
            "data_percentage": cfg.DATALOADER.DATA_PERCENTAGE,
            "text_type_id"   : getattr(cfg.DATALOADER, 'TYPE_EMBEDDING_ID', 0),
        }

        ret['tokenizer'] = ClipTokenizer()
        ret['tokenizer_name']  = "clip"

        return ret

    def _preprocess_datalist(self, datalist):
        return datalist

    def load_data(self, cfg):
        if self.stage == "test":
            cache_path = os.path.join(
                os.path.dirname(self.anno_file), "cache",
                "mscoco_caption_w_testcap_%s.pkl" % ( self.stage)
            )
            if not os.path.exists(os.path.dirname(cache_path)):
                os.makedirs(os.path.dirname(cache_path))
            if not os.path.exists(cache_path):
                datalist = self.load_raw_data(cfg, self.anno_file)
                pickle.dump(datalist, open(cache_path, "wb"))
            datalist = pickle.load(open(cache_path, "rb"))
        else:
            datalist = list()
            assert self.stage == "train", "no validation now"
            for i, stage in enumerate(["train", "val"]):
                cache_path = os.path.join(
                    os.path.dirname(self.anno_file[i]), "cache",
                    "mscoco_caption_w_testcap_%s.pkl" % ( stage)
                )
                if not os.path.exists(os.path.dirname(cache_path)):
                    os.makedirs(os.path.dirname(cache_path))
                if not os.path.exists(cache_path):
                    datalist_part = self.load_raw_data(cfg, self.anno_file[i])
                    pickle.dump(datalist_part, open(cache_path, "wb"))
                datalist_part = pickle.load(open(cache_path, "rb"))
                datalist.extend(datalist_part)

        def _load_pkl_file(filepath):
            return pickle.load(open(filepath, 'rb'), encoding='bytes') if len(filepath) > 0 else None

        ext_data = {
            "relation": _load_pkl_file(self.relation_file),
            "attribute": _load_pkl_file(self.attribute_file),
            "gv_feat": _load_pkl_file(self.gv_feat_file)
        }
        for i in range(len(datalist)):
            image_id = int(datalist[i]['image_id'])
            for data_type in ext_data:
                if ext_data[data_type] is not None:
                    if str(image_id) in ext_data[data_type]:
                        datalist[i][data_type] = ext_data[data_type][str(image_id)]
                    elif image_id in ext_data[data_type]:
                        datalist[i][data_type] = ext_data[data_type][image_id]

        if self.data_percentage < 1.0 and self.stage == 'train':
            datalist = random.sample(datalist, k = int(self.data_percentage* len(datalist) )  )

        return datalist


    def load_raw_data(self, cfg, anno_file):
        datalist = []
        annoinfo = json.load(open(anno_file))
        captions_train = sorted( annoinfo['annotations'], key=lambda x: x['id'])
        image_caption_info = defaultdict(list)
        for cap_info in captions_train:
            image_caption_info[cap_info['image_id']].append(cap_info['caption'])

        for im_id, caps in image_caption_info.items():
            datalist.append(
                {
                    "image_id": im_id,
                    "captions": caps,
                }
            )

        return datalist

    def random_word_wwm(self, tokens):
        output_tokens = []
        output_label = []

        for i, token in enumerate(tokens):
            if self.use_clip_tokenizer:
                sub_tokens = self.tokenizer.encode_basic_tokenized_token(token)
            else:
                sub_tokens = self.tokenizer.wordpiece_tokenizer.tokenize(token)
            prob = random.random()
            # mask token with 15% probability
            if prob < 0.15:
                prob /= 0.15

                # 80% randomly change token to mask token
                if prob < 0.8:
                    for sub_token in sub_tokens:
                        if self.use_clip_tokenizer:
                            output_tokens.append(self.tokenizer.encoder["<|spe|>"])
                        else:
                            output_tokens.append("[MASK]")
                # 10% randomly change token to random token
                elif prob < 0.9:
                    for sub_token in sub_tokens:
                        if self.use_clip_tokenizer:
                            output_tokens.append(random.choice(list(range(len(self.tokenizer.encoder)))))
                        else:
                            output_tokens.append(random.choice(list(self.tokenizer.vocab.keys())))
                # -> rest 10% randomly keep current token
                else:
                    for sub_token in sub_tokens:
                        output_tokens.append(sub_token)

                # append current token to output (we will predict these later)
                for sub_token in sub_tokens:
                    if self.use_clip_tokenizer:
                        output_label.append(sub_token)
                    else:
                        try:
                            output_label.append(self.tokenizer.vocab[sub_token])
                        except KeyError:
                            # For unknown words (should not occur with BPE vocab)
                            output_label.append(self.tokenizer.vocab["[UNK]"])
            else:
                for sub_token in sub_tokens:
                    # no masking token (will be ignored by loss function later)
                    output_tokens.append(sub_token)
                    output_label.append(-1)

        return output_tokens, output_label

    def __len__(self):
        return len(self.database)

    # def __call__(self, dataset_dict):
    def __getitem__(self, index):
        for i_try in range(100):
            try:
                dataset_dict = self.database[index].as_py()
                image_id = dataset_dict['image_id']
                image_split = self.idx2name[int(image_id)]['split']
                image_name = self.idx2name[int(image_id)]['name']

                # load image
                image_path = os.path.join(self.feats_folder, image_split, image_name)

                if self.use_ceph:
                    img = self.tcs_loader(image_path).convert('RGB')

                else:
                    img = Image.open(image_path).convert("RGB")
                
                break  
            except Exception as e:
                print("Failed to load image from idb {} with error {} ; trial {};".format(self.database[index], e, i_try))
                index = (index + 1) % len(self.database)
                while (self.database[index].as_py() is None):
                    index = (index + 1) % len(self.database)
                continue



        img = self.transform(img)

        ret = {
            'input_sample': [{
                    'data'        : img,
                    'invalid_mask': None,
                    'modality'    : 'image',
                    'data_type': 'input',
                    'sample_info' :{'id': image_id, 'path': image_path}
                }]
        }

        self.target_set = self.cfg.DATASETS.TARGET_SET

        if self.task_type == 'image_caption' and self.stage != 'train':
            ret.update({
                'target_set': copy.deepcopy(self.target_set),
                'target_sample': [],
                'target_idx': [],
                'task_info'    : copy.deepcopy(self.task_info)
            })
            dict_as_tensor(ret)
            return ret





        if self.task_type =='image_retrieval' and self.stage != 'train':
            captions = [caption +  " <|endoftext|>" for caption in  dataset_dict['captions']]
            caption_tokens_raw = [ self.tokenizer.encode(caption) for caption in captions]

            caption_tokens = [ caption_token[:(self.max_seq_len - 1)] + [caption_token[-1]]
                              if len(caption_token) > self.max_seq_len else caption_token
                              for caption_token in caption_tokens_raw ]


        else:
            caption = random.sample(dataset_dict['captions'], self.seq_per_img)[0]
            # caption = ['pilgrims', 'coffee', 'house', '-', 'outside', 'the', 'store']
            caption = caption + " <|endoftext|>"

            if self.task_type == 'mlm':
                u_mask_type = 1
            elif self.task_type == 'image_caption':
                u_mask_type = 0 # causal mask

            if self.task_type=='image_caption' or self.task_type =='mlm':
                if u_mask_type == 1: # mlm
                    caption_tokens = self.tokenizer.basic_tokenize(caption)
                    caption_tokens, mlm_labels = self.random_word_wwm(caption_tokens)
                else:
                    # caption
                    caption_tokens = self.tokenizer.encode(caption)
                    mlm_labels = self.tokenizer.encode("<|spe|>")*len(caption_tokens)

            else:
                caption_tokens = self.tokenizer.encode(caption)

            if len(caption_tokens) > self.max_seq_len:
                # mlm task
                text_len_keep = self.max_seq_len
                caption_tokens = caption_tokens[:(text_len_keep - 1)] + [caption_tokens[-1]]
                if self.task_type=='image_caption' or self.task_type == 'mlm':
                    mlm_labels = mlm_labels[:(text_len_keep - 1)] + [mlm_labels[-1]]

        # self.task_info = {
        #         'task_type'      : self.cfg.DATASETS.TASK_TYPE,
        #         'dataset_name'   : self.cfg.DATASETS.DATASET_NAME,
        #         'batch_size'     : self.cfg.DATASETS.TRAIN_BATCH_SIZE
        #                           if self.stage == 'train' else self.cfg.DATASETS.TEST_BATCH_SIZE,
        #         'sampling_weight': self.cfg.DATALOADER.SAMPLING_WEIGHT
        #     }

        if self.task_type == 'image_caption':
            source = np.array(caption_tokens, dtype=np.int64)
            source2 = np.array(mlm_labels, dtype=np.int64)
            ret['input_sample'].append({
                'data'            :[source, source2],
                'invalid_mask'    : None,
                'modality'        : 'text',
                'data_type'       : 'input',
                'sample_info'     :
                {
                    'text_spe_cat': True,
                }
            })
            ret.update({
                "target_sample": [],
                "target_idx"   : [np.array(caption_tokens, dtype=np.int64)],
                "target_set"   : copy.deepcopy(self.target_set),
                'task_info'    : copy.deepcopy(self.task_info)
            })

        elif self.task_type == 'mlm':
            ret['input_sample'].append({
                    'data'        : [np.array(caption_tokens, dtype=np.int64)],
                    'invalid_mask': None,
                    'modality'    : 'text',
                    'data_type'   : 'input',
                    'sample_info' : {"text_token_padding_length": self.max_seq_len}
                })
            ret.update({
                'target_sample': [],
                "target_idx"   : [np.array(mlm_labels, dtype=np.int64)],
                "target_set"   : copy.deepcopy(self.target_set),
                'task_info'    : copy.deepcopy(self.task_info)
            })
        elif self.task_type == 'image_retrieval':
            if self.stage == 'train':
                ret.update({
                    'target_sample':   [{
                        'data'        : [np.array(caption_tokens, dtype=np.int64)],
                        'modality'    : 'text',
                        'invalid_mask': None,
                        'data_type'   : 'target',
                        'sample_info' : {}
                    }],
                    'target_idx'      : [],
                    'target_set'      : [],
                    'task_info'       : copy.deepcopy(self.task_info)
                })
            else:
                ret.update(
                    {
                        'input_sample': [{
                                'data'        : img, 'invalid_mask': None, 'modality': 'image', 'data_type': 'input',
                                'sample_info' : {
                                    'id'      : (image_id, [image_id] * len(caption_tokens)),
                                    'path'    : image_path
                                }
                            }],
                        'target_sample': [{
                                'data'        : [np.array(caption_token, dtype=np.int64)
                                                for caption_token in caption_tokens],
                                'modality'    : 'text',
                                'invalid_mask': None,
                                'data_type'   : 'target',
                                'sample_info' : {
                                    'sample_alone': True,
                                }

                            }],
                        'target_idx'          : [],
                        'target_set'          : [],
                        'task_info'           : copy.deepcopy(self.task_info)
                    }
                )
        else:
            raise NotImplementedError

        dict_as_tensor(ret)

        return ret