File size: 19,596 Bytes
32b542e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import os
import copy
import pickle
from PIL import Image
from torchvision import transforms
import random
from torchvision.transforms.transforms import ToTensor
from tqdm import tqdm
import numpy as np
from uniperceiver.config import configurable
from uniperceiver.functional import read_np, dict_as_tensor, boxes_to_locfeats
from ..build import DATASETS_REGISTRY
import glob
from uniperceiver.tokenization import ClipTokenizer
import json
from collections import defaultdict
from uniperceiver.datasets.custom_transforms import clip_transforms
import pyarrow as pa
from uniperceiver.utils import comm
__all__ = ["ImageTextPairDataset"]
memorycache = False
@DATASETS_REGISTRY.register()
class ImageTextPairDataset:
@configurable
def __init__(
self,
cfg: str,
stage: str,
anno_file: str,
seq_per_img: int,
max_seq_len: int,
feats_folder: str,
relation_file: str,
gv_feat_file: str,
attribute_file: str,
transform,
tokenizer,
data_percentage,
tokenizer_name,
use_ceph: bool,
tcs_conf_path,
task_type,
preload_feats = None,
random_mask=False,
text_type_id=0,
):
assert len(task_type)>0
self.cfg = cfg
self.stage = stage
self.anno_file = anno_file
self.seq_per_img = seq_per_img
assert self.seq_per_img == 1
self.use_ceph = use_ceph
self.task_type = task_type
if self.use_ceph:
self.feats_folder = 's3://coco'
print('debug info for coco pretrain: {} '.format(self.feats_folder))
from uniperceiver.datasets import TCSLoader
if 'SLURM_PROCID' in os.environ:
self.tcs_loader = TCSLoader(tcs_conf_path)
else:
self.tcs_loader = TCSLoader('petreloss_local.config')
else:
# local image folder
self.feats_folder = feats_folder
self.max_seq_len = max_seq_len
self.relation_file = relation_file
self.gv_feat_file = gv_feat_file
self.attribute_file = attribute_file
self.data_percentage = data_percentage
self.tokenizer = tokenizer
self.tokenizer_name = tokenizer_name
self.use_clip_tokenizer = tokenizer_name == 'clip'
self.initialized = False
self.transform = transform
self.loaded_feats = None
if preload_feats:
self.loaded_feats = self.pre_load_feats(preload_feats)
# for index_maping
self.idx2name = dict()
self.name2idx = dict()
# please
if isinstance(self.anno_file, list):
imageinfo = list()
for anno_file in self.anno_file:
imageinfo.extend(json.load(open(anno_file))["images"])
else:
imageinfo = json.load(open(self.anno_file))["images"]
for info in imageinfo:
self.idx2name[info['id']] = {
"split": info['file_path'],
"name": info['file_name']}
self.name2idx[info['file_name']] = info['id']
self.random_mask = random_mask
self.text_type_id = text_type_id
self.task_info = {
'task_type' : self.cfg.DATASETS.TASK_TYPE,
'dataset_name' : self.cfg.DATASETS.DATASET_NAME,
'batch_size' : self.cfg.DATALOADER.TRAIN_BATCH_SIZE
if self.stage == 'train' else self.cfg.DATALOADER.TEST_BATCH_SIZE,
'sampling_weight': self.cfg.DATALOADER.SAMPLING_WEIGHT
}
_temp_list =self.load_data(self.cfg)
self.database = pa.array(_temp_list)
if comm.is_main_process():
import sys
print("MSCOCO Pretrain Dataset:")
print('!!! length of _temp_list: ', len(_temp_list))
print('!!! size of _temp_list: ', sys.getsizeof(_temp_list))
print('!!! size of pa database: ', sys.getsizeof(self.database))
del _temp_list
def pre_load_feats(self, preload_feat_folder):
loaded_feats = {}
file_list = glob.glob(os.path.join(preload_feat_folder, '*.pkl'))
for fname in file_list:
with open(fname, 'rb') as f:
feats = pickle.load(f)
loaded_feats.update(feats)
return loaded_feats
@classmethod
def from_config(cls, cfg, stage: str = "train"):
if 'SLURM_PROCID' in os.environ:
tcs_conf_path = cfg.DATALOADER.get("TCS_CONF_PATH", "petreloss.config")
else:
# dev machine
tcs_conf_path = "slurm_tools/petreloss_local.config"
ann_files = {
"train": [os.path.join(cfg.DATALOADER.ANNO_FOLDER, "captions_train113k.json"), os.path.join(cfg.DATALOADER.ANNO_FOLDER, "captions_val5k.json")],
# no validation
"test": os.path.join(cfg.DATALOADER.ANNO_FOLDER, "captions_test5k.json")
}
if getattr(cfg.DATALOADER, 'TRANSFORM', None) == 'clip_transforms':
transform = clip_transforms(stage,
img_size=cfg.MODEL.IMG_INPUT_SIZE)
else:
transform = transforms.Compose([
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))]
)
ret = {
"cfg" : cfg,
"stage" : stage,
"anno_file" : ann_files[stage],
"seq_per_img" : 1,
"feats_folder" : cfg.DATALOADER.FEATS_FOLDER,
"relation_file" : cfg.DATALOADER.RELATION_FILE,
"gv_feat_file" : cfg.DATALOADER.GV_FEAT_FILE,
"attribute_file" : cfg.DATALOADER.ATTRIBUTE_FILE,
"max_seq_len" : cfg.MODEL.MAX_SEQ_LEN,
"use_ceph" : getattr(cfg.DATALOADER, 'USE_CEPH', False),
"tcs_conf_path" : tcs_conf_path,
"transform" : transform,
'task_type' : cfg.DATASETS.TASK_TYPE,
"random_mask" : getattr(cfg.DATALOADER, 'RANDOM_MASK', False),
"data_percentage": cfg.DATALOADER.DATA_PERCENTAGE,
"text_type_id" : getattr(cfg.DATALOADER, 'TYPE_EMBEDDING_ID', 0),
}
ret['tokenizer'] = ClipTokenizer()
ret['tokenizer_name'] = "clip"
return ret
def _preprocess_datalist(self, datalist):
return datalist
def load_data(self, cfg):
if self.stage == "test":
cache_path = os.path.join(
os.path.dirname(self.anno_file), "cache",
"mscoco_caption_w_testcap_%s.pkl" % ( self.stage)
)
if not os.path.exists(os.path.dirname(cache_path)):
os.makedirs(os.path.dirname(cache_path))
if not os.path.exists(cache_path):
datalist = self.load_raw_data(cfg, self.anno_file)
pickle.dump(datalist, open(cache_path, "wb"))
datalist = pickle.load(open(cache_path, "rb"))
else:
datalist = list()
assert self.stage == "train", "no validation now"
for i, stage in enumerate(["train", "val"]):
cache_path = os.path.join(
os.path.dirname(self.anno_file[i]), "cache",
"mscoco_caption_w_testcap_%s.pkl" % ( stage)
)
if not os.path.exists(os.path.dirname(cache_path)):
os.makedirs(os.path.dirname(cache_path))
if not os.path.exists(cache_path):
datalist_part = self.load_raw_data(cfg, self.anno_file[i])
pickle.dump(datalist_part, open(cache_path, "wb"))
datalist_part = pickle.load(open(cache_path, "rb"))
datalist.extend(datalist_part)
def _load_pkl_file(filepath):
return pickle.load(open(filepath, 'rb'), encoding='bytes') if len(filepath) > 0 else None
ext_data = {
"relation": _load_pkl_file(self.relation_file),
"attribute": _load_pkl_file(self.attribute_file),
"gv_feat": _load_pkl_file(self.gv_feat_file)
}
for i in range(len(datalist)):
image_id = int(datalist[i]['image_id'])
for data_type in ext_data:
if ext_data[data_type] is not None:
if str(image_id) in ext_data[data_type]:
datalist[i][data_type] = ext_data[data_type][str(image_id)]
elif image_id in ext_data[data_type]:
datalist[i][data_type] = ext_data[data_type][image_id]
if self.data_percentage < 1.0 and self.stage == 'train':
datalist = random.sample(datalist, k = int(self.data_percentage* len(datalist) ) )
return datalist
def load_raw_data(self, cfg, anno_file):
datalist = []
annoinfo = json.load(open(anno_file))
captions_train = sorted( annoinfo['annotations'], key=lambda x: x['id'])
image_caption_info = defaultdict(list)
for cap_info in captions_train:
image_caption_info[cap_info['image_id']].append(cap_info['caption'])
for im_id, caps in image_caption_info.items():
datalist.append(
{
"image_id": im_id,
"captions": caps,
}
)
return datalist
def random_word_wwm(self, tokens):
output_tokens = []
output_label = []
for i, token in enumerate(tokens):
if self.use_clip_tokenizer:
sub_tokens = self.tokenizer.encode_basic_tokenized_token(token)
else:
sub_tokens = self.tokenizer.wordpiece_tokenizer.tokenize(token)
prob = random.random()
# mask token with 15% probability
if prob < 0.15:
prob /= 0.15
# 80% randomly change token to mask token
if prob < 0.8:
for sub_token in sub_tokens:
if self.use_clip_tokenizer:
output_tokens.append(self.tokenizer.encoder["<|spe|>"])
else:
output_tokens.append("[MASK]")
# 10% randomly change token to random token
elif prob < 0.9:
for sub_token in sub_tokens:
if self.use_clip_tokenizer:
output_tokens.append(random.choice(list(range(len(self.tokenizer.encoder)))))
else:
output_tokens.append(random.choice(list(self.tokenizer.vocab.keys())))
# -> rest 10% randomly keep current token
else:
for sub_token in sub_tokens:
output_tokens.append(sub_token)
# append current token to output (we will predict these later)
for sub_token in sub_tokens:
if self.use_clip_tokenizer:
output_label.append(sub_token)
else:
try:
output_label.append(self.tokenizer.vocab[sub_token])
except KeyError:
# For unknown words (should not occur with BPE vocab)
output_label.append(self.tokenizer.vocab["[UNK]"])
else:
for sub_token in sub_tokens:
# no masking token (will be ignored by loss function later)
output_tokens.append(sub_token)
output_label.append(-1)
return output_tokens, output_label
def __len__(self):
return len(self.database)
# def __call__(self, dataset_dict):
def __getitem__(self, index):
for i_try in range(100):
try:
dataset_dict = self.database[index].as_py()
image_id = dataset_dict['image_id']
image_split = self.idx2name[int(image_id)]['split']
image_name = self.idx2name[int(image_id)]['name']
# load image
image_path = os.path.join(self.feats_folder, image_split, image_name)
if self.use_ceph:
img = self.tcs_loader(image_path).convert('RGB')
else:
img = Image.open(image_path).convert("RGB")
break
except Exception as e:
print("Failed to load image from idb {} with error {} ; trial {};".format(self.database[index], e, i_try))
index = (index + 1) % len(self.database)
while (self.database[index].as_py() is None):
index = (index + 1) % len(self.database)
continue
img = self.transform(img)
ret = {
'input_sample': [{
'data' : img,
'invalid_mask': None,
'modality' : 'image',
'data_type': 'input',
'sample_info' :{'id': image_id, 'path': image_path}
}]
}
self.target_set = self.cfg.DATASETS.TARGET_SET
if self.task_type == 'image_caption' and self.stage != 'train':
ret.update({
'target_set': copy.deepcopy(self.target_set),
'target_sample': [],
'target_idx': [],
'task_info' : copy.deepcopy(self.task_info)
})
dict_as_tensor(ret)
return ret
if self.task_type =='image_retrieval' and self.stage != 'train':
captions = [caption + " <|endoftext|>" for caption in dataset_dict['captions']]
caption_tokens_raw = [ self.tokenizer.encode(caption) for caption in captions]
caption_tokens = [ caption_token[:(self.max_seq_len - 1)] + [caption_token[-1]]
if len(caption_token) > self.max_seq_len else caption_token
for caption_token in caption_tokens_raw ]
else:
caption = random.sample(dataset_dict['captions'], self.seq_per_img)[0]
# caption = ['pilgrims', 'coffee', 'house', '-', 'outside', 'the', 'store']
caption = caption + " <|endoftext|>"
if self.task_type == 'mlm':
u_mask_type = 1
elif self.task_type == 'image_caption':
u_mask_type = 0 # causal mask
if self.task_type=='image_caption' or self.task_type =='mlm':
if u_mask_type == 1: # mlm
caption_tokens = self.tokenizer.basic_tokenize(caption)
caption_tokens, mlm_labels = self.random_word_wwm(caption_tokens)
else:
# caption
caption_tokens = self.tokenizer.encode(caption)
mlm_labels = self.tokenizer.encode("<|spe|>")*len(caption_tokens)
else:
caption_tokens = self.tokenizer.encode(caption)
if len(caption_tokens) > self.max_seq_len:
# mlm task
text_len_keep = self.max_seq_len
caption_tokens = caption_tokens[:(text_len_keep - 1)] + [caption_tokens[-1]]
if self.task_type=='image_caption' or self.task_type == 'mlm':
mlm_labels = mlm_labels[:(text_len_keep - 1)] + [mlm_labels[-1]]
# self.task_info = {
# 'task_type' : self.cfg.DATASETS.TASK_TYPE,
# 'dataset_name' : self.cfg.DATASETS.DATASET_NAME,
# 'batch_size' : self.cfg.DATASETS.TRAIN_BATCH_SIZE
# if self.stage == 'train' else self.cfg.DATASETS.TEST_BATCH_SIZE,
# 'sampling_weight': self.cfg.DATALOADER.SAMPLING_WEIGHT
# }
if self.task_type == 'image_caption':
source = np.array(caption_tokens, dtype=np.int64)
source2 = np.array(mlm_labels, dtype=np.int64)
ret['input_sample'].append({
'data' :[source, source2],
'invalid_mask' : None,
'modality' : 'text',
'data_type' : 'input',
'sample_info' :
{
'text_spe_cat': True,
}
})
ret.update({
"target_sample": [],
"target_idx" : [np.array(caption_tokens, dtype=np.int64)],
"target_set" : copy.deepcopy(self.target_set),
'task_info' : copy.deepcopy(self.task_info)
})
elif self.task_type == 'mlm':
ret['input_sample'].append({
'data' : [np.array(caption_tokens, dtype=np.int64)],
'invalid_mask': None,
'modality' : 'text',
'data_type' : 'input',
'sample_info' : {"text_token_padding_length": self.max_seq_len}
})
ret.update({
'target_sample': [],
"target_idx" : [np.array(mlm_labels, dtype=np.int64)],
"target_set" : copy.deepcopy(self.target_set),
'task_info' : copy.deepcopy(self.task_info)
})
elif self.task_type == 'image_retrieval':
if self.stage == 'train':
ret.update({
'target_sample': [{
'data' : [np.array(caption_tokens, dtype=np.int64)],
'modality' : 'text',
'invalid_mask': None,
'data_type' : 'target',
'sample_info' : {}
}],
'target_idx' : [],
'target_set' : [],
'task_info' : copy.deepcopy(self.task_info)
})
else:
ret.update(
{
'input_sample': [{
'data' : img, 'invalid_mask': None, 'modality': 'image', 'data_type': 'input',
'sample_info' : {
'id' : (image_id, [image_id] * len(caption_tokens)),
'path' : image_path
}
}],
'target_sample': [{
'data' : [np.array(caption_token, dtype=np.int64)
for caption_token in caption_tokens],
'modality' : 'text',
'invalid_mask': None,
'data_type' : 'target',
'sample_info' : {
'sample_alone': True,
}
}],
'target_idx' : [],
'target_set' : [],
'task_info' : copy.deepcopy(self.task_info)
}
)
else:
raise NotImplementedError
dict_as_tensor(ret)
return ret
|