File size: 23,299 Bytes
32b542e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
# Copyright 2021 JD.com, Inc., JD AI
"""
@author: Yehao Li, Jingwen Chen
@contact: [email protected], [email protected]
"""
import os
import copy
import pickle
import random
import numpy as np
import torch
from uniperceiver.config import configurable
from uniperceiver.functional import read_np, dict_as_tensor
from ..build import DATASETS_REGISTRY
from uniperceiver.tokenization import ClipTokenizer
from torchvision.transforms import Compose, RandomApply, ToTensor, Normalize, CenterCrop, Lambda, RandomHorizontalFlip, ColorJitter, Resize, RandomCrop
from .video_transform import random_short_side_scale_jitter, uniform_crop
import json
from io import BytesIO
import av
from .video_raw import VideoDataSet
import io
from collections import defaultdict

import pyarrow as pa
from uniperceiver.utils import comm
import copy

__all__ = ["MSRVTTDataset"]

def random_clip(video_frames, sampling_rate, frames_per_clip, fixed_offset=False):
    """
    Args:
        video_frames (int): total frame number of a video
        sampling_rate (int): sampling rate for clip, pick one every k frames
        frames_per_clip (int): number of frames of a clip
        fixed_offset (bool): used with sample offset to decide the offset value deterministically.
    Returns:
        list[int]: frame indices (started from zero)
    """
    new_sampling_rate = sampling_rate
    highest_idx = video_frames - int(new_sampling_rate * frames_per_clip)
    if highest_idx <= 0:
        random_offset = 0
    else:
        if fixed_offset:
            random_offset = (video_frames - int(new_sampling_rate * frames_per_clip)) // 2
        else:
            random_offset = int(np.random.randint(0, highest_idx, 1))
    frame_idx = [int(random_offset + int(i * sampling_rate)) % video_frames for i in range(frames_per_clip)]
    frame_idx = [x for x in frame_idx if x < video_frames]
    return frame_idx


@DATASETS_REGISTRY.register()
class MSRVTTDataset(VideoDataSet):
    @configurable
    def __init__(
        self,
        stage: str,
        anno_file: str,
        seq_per_img: int,
        max_feat_num: int,
        max_seq_len: int,
        feats_folder: str,
        tokenizer,
        tokenizer_name,
        use_ceph: bool,
        tcs_conf_path,
        frames_per_clip, interval, num_clips, timesformer_aug,
        task_type,
        data_percentage,
        target_fps=30,
        random_mask=False,
        cfg=None,
    ):
        self.cfg = cfg
        self.stage = stage
        self.anno_file = anno_file
        self.seq_per_img = seq_per_img
        self.max_feat_num = max_feat_num
        self.feats_folder = feats_folder
        self.max_seq_len = max_seq_len
        self.task_type = task_type

        self.initialized = False

        # sample_list = list(self.fin.keys())
        self.tokenizer = tokenizer
        self.tokenizer_name = tokenizer_name
        self.use_clip_tokenizer = self.tokenizer_name == 'clip'
        # for index_maping
        self.idx2name = dict()
        self.name2idx = dict()

        self.use_ceph = use_ceph
        if isinstance(self.anno_file, list):
            self.cache_dir = os.path.join(os.path.dirname(self.anno_file[0]), 'cache')
        else:
            self.cache_dir = os.path.join(os.path.dirname(self.anno_file), 'cache')
        self.frames_per_clip = frames_per_clip
        self.interval = interval
        
        # self.MULTI_VEIW = self.cfg.DATALOADER.get('MULTI_VEIW', 'v0')
        # self.MULTI_VEIW_NUM = self.cfg.DATALOADER.get('MULTI_VEIW_NUM', 1)
        self.random_stride = self.cfg.DATALOADER.get('RANDON_STRIDE', False)

        self.num_clips = num_clips
        self.is_train = stage == 'train'
        self.test_mode = stage != 'train'
        self.transform = self._timesformer_transform() if timesformer_aug else self._transform()
        self.target_fps = target_fps
        self.data_percentage = data_percentage

        if self.use_ceph:
            self.feats_folder = 's3://msrvtt/videos/'
            if isinstance(self.anno_file, list):
                self.anno_file = [os.path.join('s3://msrvtt/annotations/', os.path.basename(anno_file)) for anno_file in self.anno_file]
            else:
                self.anno_file = os.path.join('s3://msrvtt/annotations/', os.path.basename(self.anno_file))
            print('debug info for msrvtt pretrain: {} '.format(self.feats_folder))
            from uniperceiver.datasets import TCSLoader
            if 'SLURM_PROCID' in os.environ:
                self.tcs_loader = TCSLoader(tcs_conf_path)
            else:
                self.tcs_loader = TCSLoader('slurm_tools/petreloss_local.config')
        else:
            # local image folder
            self.feats_folder = feats_folder

        if self.use_ceph:
            if isinstance(self.anno_file, list):
                videoinfo = list()
                for anno_file in self.anno_file:
                    videoinfo.extend(json.load(BytesIO(self.tcs_loader.client.get(anno_file)))["images"])
            else:
                videoinfo = json.load(BytesIO(self.tcs_loader.client.get(self.anno_file)))["images"]
        else:
            if isinstance(self.anno_file, list):
                videoinfo = list()
                for anno_file in self.anno_file:
                    videoinfo.extend(json.load(open(anno_file))["images"])
            else:
                videoinfo = json.load(open(self.anno_file))["images"]
        for vinfo in videoinfo:
            self.idx2name[vinfo['id']] = vinfo['file_name']
            self.name2idx[vinfo['file_name']] = vinfo['id']
        self.random_mask = random_mask
        pass

        _temp_list =self.load_data(self.cfg)
        self.video_list = pa.array(_temp_list)
        if comm.is_main_process():
            import sys
            print(f"!!! Dataset {self.cfg.DATASETS.DATASET_NAME} with task {self.cfg.DATASETS.TASK_TYPE}:")
            print('!!! length of _temp_list: ', len(_temp_list))
            print('!!! size of _temp_list: ', sys.getsizeof(_temp_list))
            print('!!! size of pa database: ', sys.getsizeof(self.video_list))
        del _temp_list

        self.task_info = {
            'task_type'      : self.cfg.DATASETS.TASK_TYPE,
            'dataset_name'   : self.cfg.DATASETS.DATASET_NAME,
            'batch_size'     : self.cfg.DATALOADER.TRAIN_BATCH_SIZE if self.stage == 'train' else self.cfg.DATALOADER.TEST_BATCH_SIZE,
            'sampling_weight': self.cfg.DATALOADER.SAMPLING_WEIGHT
        }

        self.target_set = self.cfg.DATASETS.TARGET_SET


    @classmethod
    def from_config(cls, cfg, stage: str = "train"):
        if stage == "train":
            ann_file = os.path.join(cfg.DATALOADER.ANNO_FOLDER, "caption_msrvtt_1k_trainval_cocostyle.json")
        else:
            assert stage == "test"
            ann_file = os.path.join(cfg.DATALOADER.ANNO_FOLDER, "caption_msrvtt_1k_test_cocostyle.json")
        feat_path = os.path.join(cfg.DATALOADER.FEATS_FOLDER, "MSRVTT_ResNet152_{}.hdf5".format(stage))

        if 'SLURM_PROCID' in os.environ:
            tcs_conf_path = cfg.DATALOADER.get("TCS_CONF_PATH", "petreloss.config")
        else:
            # dev machine
            tcs_conf_path = "petreloss_local.config"

        ret = {
            "stage": stage,
            "anno_file": ann_file,
            "seq_per_img": cfg.DATALOADER.SEQ_PER_SAMPLE,
            "max_feat_num": cfg.DATALOADER.MAX_FEAT_NUM,
            "feats_folder": feat_path,
            "max_seq_len": cfg.MODEL.MAX_SEQ_LEN,
            "use_ceph": getattr(cfg.DATALOADER, 'USE_CEPH', False),
            "tcs_conf_path": tcs_conf_path,
            'task_type': cfg.DATASETS.TASK_TYPE,
            "frames_per_clip": cfg.DATALOADER.FRAMES_PER_CLIP,
            "interval": cfg.DATALOADER.STRIDE,
            "num_clips": 1 if stage == 'train' else cfg.INFERENCE.NUM_VIEWS,
            "timesformer_aug": cfg.DATALOADER.TIMESFORMER_AUG,
            "data_percentage": cfg.DATALOADER.DATA_PERCENTAGE,
            "cfg": cfg,
        }
        if getattr(cfg.INFERENCE, "VOCAB", None) == 'CLIP':
            ret['tokenizer'] = ClipTokenizer()
            ret['tokenizer_name']  = "clip"
        else:
            raise NotImplementedError
        return ret

    def load_data(self, cfg):
        if self.stage == "train":
            total_datalist = list()
            for i, stage in enumerate(["train", "val"]):
                cache_path = os.path.join(
                    self.cache_dir,
                    "msrvtt_raw_caption_retrieval_%s_%s_%d.pkl" % (self.tokenizer_name, stage, self.max_seq_len)
                )
                if not os.path.exists(os.path.dirname(cache_path)):
                    os.makedirs(os.path.dirname(cache_path))
                if not os.path.exists(cache_path):
                    datalist = self.load_raw_data(cfg, self.anno_file[i])
                    pickle.dump(datalist, open(cache_path, "wb"))
                datalist = pickle.load(open(cache_path, "rb"))
                if isinstance(datalist[0]['caption'], list):
                    new_datalist = list()
                    for data in datalist:
                        if isinstance(data['caption'], str):
                            new_datalist.append(data)
                        else:
                            video_id = data['video_id']
                            for caption in data['caption']:
                                new_datalist.append({
                                    "video_id": video_id,
                                    "caption": caption,
                                })
                    datalist = new_datalist
                total_datalist.extend(datalist)

            if self.data_percentage < 1.0 and self.stage == 'train':
                datalist = random.sample(total_datalist, k = int(self.data_percentage* len(total_datalist) )  )
                total_datalist = datalist

        else:
            assert self.stage == "test"
            cache_path = os.path.join(
                self.cache_dir,
                "msrvtt_raw_caption_retrieval_%s_%s_%d.pkl" % (self.tokenizer_name, self.stage, self.max_seq_len)
            )
            if not os.path.exists(os.path.dirname(cache_path)):
                os.makedirs(os.path.dirname(cache_path))
            if not os.path.exists(cache_path):
                datalist = self.load_raw_data(cfg, self.anno_file)
                pickle.dump(datalist, open(cache_path, "wb"))
            datalist = pickle.load(open(cache_path, "rb"))
            total_datalist = datalist
        return total_datalist


    def load_raw_data(self, cfg, anno_file):
        datalist = []
        if self.stage == 'train':
            if self.use_ceph:
                annoinfo = json.load(BytesIO(self.tcs_loader.client.get(anno_file)))
            else:
                annoinfo = json.load(open(anno_file))
            captions_train = sorted( annoinfo['annotations'], key=lambda x: x['id'])
            for data in captions_train:
                datalist.append(
                    {
                        'video_id': data['image_id'],
                        'caption': data['caption']
                    }
                )

        else:
            if self.use_ceph:
                annoinfo = json.load(BytesIO(self.tcs_loader.client.get(self.anno_file)))
            else:
                annoinfo = json.load(open(self.anno_file))
            captions_train = sorted( annoinfo['annotations'], key=lambda x: x['id'])
            video2caps = defaultdict(list)
            for data in captions_train:
                video2caps[data['image_id']].append(data['caption'])

            for videoid, caps in video2caps.items():
                datalist.append(
                    {
                        'video_id': videoid,
                        'caption': caps
                    }
                )
        return datalist

    def _timesformer_transform(self):
        transforms = [
            Lambda(lambda frames: torch.stack([ToTensor()(frame.convert("RGB")) for frame in frames])),
        ]
        if self.test_mode:
            test_scale = self.cfg.MODEL.IMG_INPUT_SIZE
            transforms.extend([
                Lambda(lambda frames: random_short_side_scale_jitter(
                    frames, test_scale, test_scale)[0]),
                CenterCrop(test_scale),
                # Lambda(lambda images: torch.stack([uniform_crop(images, 224, i)[0] for i in range(3)], 0))
            ])
        else:
            min_scale = int((256 / 224)*self.cfg.MODEL.IMG_INPUT_SIZE)
            max_scale = int((320 / 224)*self.cfg.MODEL.IMG_INPUT_SIZE)

            transforms.extend([
                Lambda(lambda frames: random_short_side_scale_jitter(frames, min_scale, max_scale)[0].unsqueeze(0)),
                RandomHorizontalFlip(),
                RandomCrop(self.cfg.MODEL.IMG_INPUT_SIZE)
            ])
        transforms.append(
            # Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
            # change to imagenet default value to keep consistency with pretrained parameters
            # Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
            Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        )
        return Compose(transforms)

    def _sample_frame(self, atten_feats):
        interval = atten_feats.shape[0] / self.max_feat_num
        selected_indexes = [int(i * interval) for i in range(self.max_feat_num)]
        selected_frames = atten_feats[selected_indexes, :]
        return selected_frames

    def random_word_wwm(self, tokens):
        output_tokens = []
        output_label = []

        for i, token in enumerate(tokens):
            if self.use_clip_tokenizer:
                sub_tokens = self.tokenizer.encode_basic_tokenized_token(token)
            else:
                sub_tokens = self.tokenizer.wordpiece_tokenizer.tokenize(token)
            prob = random.random()
            # mask token with 15% probability
            if prob < 0.15:
                prob /= 0.15

                # 80% randomly change token to mask token
                if prob < 0.8:
                    for sub_token in sub_tokens:
                        if self.use_clip_tokenizer:
                            output_tokens.append(self.tokenizer.encoder["<|spe|>"])
                        else:
                            output_tokens.append("[MASK]")
                # 10% randomly change token to random token
                elif prob < 0.9:
                    for sub_token in sub_tokens:
                        if self.use_clip_tokenizer:
                            output_tokens.append(random.choice(list(range(len(self.tokenizer.encoder)))))
                        else:
                            output_tokens.append(random.choice(list(self.tokenizer.vocab.keys())))
                # -> rest 10% randomly keep current token
                else:
                    for sub_token in sub_tokens:
                        output_tokens.append(sub_token)

                # append current token to output (we will predict these later)
                for sub_token in sub_tokens:
                    if self.use_clip_tokenizer:
                        output_label.append(sub_token)
                    else:
                        try:
                            output_label.append(self.tokenizer.vocab[sub_token])
                        except KeyError:
                            # For unknown words (should not occur with BPE vocab)
                            output_label.append(self.tokenizer.vocab["[UNK]"])
            else:
                for sub_token in sub_tokens:
                    # no masking token (will be ignored by loss function later)
                    output_tokens.append(sub_token)
                    output_label.append(-1)

        # if no word masked, random choose a word to mask
        # if all([l_ == -1 for l_ in output_label]):
        #    choosed = random.randrange(0, len(output_label))
        #    output_label[choosed] = self.tokenizer.vocab[tokens[choosed]]

        return output_tokens, output_label


    def __getitem__(self, idx):
        
        for i_try in range(100):
            # try:
            record = self.video_list[idx].as_py()
            record = copy.deepcopy(record)
            video_id = record['video_id']
            # load video

            video_path = os.path.join(self.feats_folder, self.idx2name[video_id] + '.mp4')
            if self.use_ceph:
                container = av.open(io.BytesIO(self.tcs_loader.client.get(video_path)))
            else:
                container = av.open(video_path)


            # container.streams.video[0].thread_type = "AUTO"
            stream = container.streams.video[0]
            total_frames = stream.frames
            fps = float(container.streams.video[0].average_rate)

            if total_frames == 0:
                # it returns 0 if not know, but that doesn't mean the video is null
                for frame in container.decode(stream):
                    total_frames += 1
                container.close()
                container = av.open(video_path)
                stream = container.streams.video[0]
            # except Exception as e:
            #     print(
            #         "Failed to load video from {} with error {} ; trial {}".format(
            #             video_path, e, i_try
            #         )
            #     )

                # let's try another one
                # index = random.randint(0, len(self.data_list) - 1)
                # record = self.data_list[index]
                # continue

            if self.stage=='train':
                indices = [self._sample_indices(total_frames, fps)]
            else:
                indices = self._get_val_indices(total_frames, fps)

            all_index = set()
            for index in indices:
                all_index = all_index.union(set(index))

            start_index = min(all_index)
            num_frames = len(all_index)

            images = dict()

            fetched = 0

            for frame in container.decode(stream):
                if frame.index not in all_index or frame.index in images:
                    continue
                images[frame.index] = frame.to_rgb().to_image()
                last = frame.index
                fetched += 1
                if fetched == num_frames:
                    break

            container.close()

            video_data = list()
            for ind in indices:
                seq = list()
                for i in ind:
                    if i in images:
                        seq.append(images[i])
                    else:
                        seq.append(images[last])
                video_data.append(self.transform(seq))
            video_data = torch.cat(video_data, dim=0)

            if video_data.dim() == 4:
                video_data.unsqueeze_(0) # in case there is only one frame

            ret = {
                'input_sample':[
                    {
                        'data': video_data, 'invalid_mask': None, 'modality': 'video', 'data_type': 'input',
                        'sample_info':{
                            'id': video_id,
                            'path': video_path,
                            'num_views':num_frames,
                            'cat_along_first_dim': True,
                            }
                    }
                ],
                'target_sample': [],
            }

            if self.stage == 'train' and record['caption'] is not None:
                caption = record['caption']
                caption = caption + " <|endoftext|>"

                if self.task_type == 'video_mlm':
                    u_mask_type = 1
                elif self.task_type == 'video_caption':
                    u_mask_type = 0 # causal mask

                if self.task_type=='video_caption' or self.task_type =='video_mlm':
                    if u_mask_type == 1: # mlm
                        caption_tokens = self.tokenizer.basic_tokenize(caption)
                        caption_tokens, mlm_labels = self.random_word_wwm(caption_tokens)
                    else:
                        # caption
                        caption_tokens = self.tokenizer.encode(caption)
                        mlm_labels = self.tokenizer.encode("<|spe|>")*len(caption_tokens)

                else:
                    caption_tokens = self.tokenizer.encode(caption)


                if len(caption_tokens) > self.max_seq_len:
                    # mlm task
                    text_len_keep = self.max_seq_len
                    caption_tokens = caption_tokens[:(text_len_keep - 1)] + [caption_tokens[-1]]
                    if self.task_type == 'video_caption' or self.task_type == 'video_mlm':
                        mlm_labels = mlm_labels[:(text_len_keep - 1)] + [mlm_labels[-1]]

                ret = {
                    'input_sample': [{
                        'data': video_data, 'invalid_mask': None, 'modality': 'video', 'data_type': 'input',
                        'sample_info':{
                            'id': video_id,
                            'path': video_path,
                            'num_views':num_frames,
                            'cat_along_first_dim': True,
                            }
                    }]
                }

                if self.task_type == 'video_caption':

                    source = np.array(caption_tokens, dtype=np.int64)
                    source2 = np.array(mlm_labels, dtype=np.int64)
                    ret['input_sample'].append({
                        'data': [source, source2],
                        'invalid_mask': None,
                        'modality': 'text',
                        'data_type': 'input',
                        'sample_info': {
                            'text_spe_cat': True,
                        }
                    })
                    ret.update({
                        'target_sample': [],
                        'target_idx'   : [np.array(caption_tokens, dtype=np.int64)],
                        'target_set'   : copy.deepcopy(self.target_set),
                        'task_info'    : copy.deepcopy(self.task_info)
                    })

                elif self.task_type == 'video_mlm':

                    raise NotImplementedError('no needed for masked language modeling when given video now.')


                elif self.task_type == 'video_retrieval':
                    ret.update({
                    'target_sample': [{
                        'data'        : [np.array(caption_tokens, dtype=np.int64)],
                        'modality'    : 'text',
                        'data_type'  : 'target',
                        'invalid_mask':  None,
                        'sample_info' : {}
                    }],
                    'target_idx'   : [],
                    'target_set'   : [],
                    'task_info'    : copy.deepcopy(self.task_info)
                })
                else:
                    raise NotImplementedError
            else:
                raise NotImplementedError



            dict_as_tensor(ret)
            return ret