File size: 18,557 Bytes
32b542e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import os
import random
import numpy as np
import torch
import pickle
from PIL import Image
import torch.utils.data as data
import torch.nn.functional as F
from torchvision.transforms import Compose, RandomApply, ToTensor, Normalize, CenterCrop, Lambda, RandomHorizontalFlip, ColorJitter, Resize, RandomCrop
import json
import av
from torchvision.transforms.transforms import RandomResizedCrop
from uniperceiver.tokenization import ClipTokenizer
from uniperceiver.config import configurable
from ..build import DATASETS_REGISTRY
from uniperceiver.functional import dict_as_tensor
from .video_transform import random_short_side_scale_jitter, uniform_crop
import pyarrow as pa
from uniperceiver.utils import comm
import copy
import io
__all__ = ["VideoDataSet", "random_clip"]
def load_pkl_file(filepath):
return pickle.load(open(filepath, 'rb'), encoding='bytes') if len(filepath) > 0 else None
def random_clip(video_frames, sampling_rate, frames_per_clip, fixed_offset=False):
"""
Args:
video_frames (int): total frame number of a video
sampling_rate (int): sampling rate for clip, pick one every k frames
frames_per_clip (int): number of frames of a clip
fixed_offset (bool): used with sample offset to decide the offset value deterministically.
Returns:
list[int]: frame indices (started from zero)
"""
new_sampling_rate = sampling_rate
highest_idx = video_frames - int(new_sampling_rate * (frames_per_clip - 1) + 1)
if highest_idx <= 0:
random_offset = 0
else:
if fixed_offset:
random_offset = (video_frames - int(new_sampling_rate * frames_per_clip)) // 2
else:
random_offset = int(np.random.randint(0, highest_idx, 1))
frame_idx = [int(random_offset + int(i * sampling_rate)) % video_frames for i in range(frames_per_clip)]
frame_idx = [x for x in frame_idx if x < video_frames]
return frame_idx
@DATASETS_REGISTRY.register()
class VideoDataSet(data.Dataset):
@configurable
def __init__(self, cfg, stage, root_path, s3_path, list_file, category_file, use_ceph, tcs_conf_path,
tokenizer, tokenizer_name, data_percentage,
frames_per_clip=64, interval=4, num_clips=1,
is_train=True, test_mode=False, num_classes=None, target_fps=30, timesformer_aug=False, minibatches=1):
"""
Args:
root_path (str): the file path to the root of video folder
list_file (str): the file list, each line with folder_path, start_frame, end_frame, label_id
frames_per_clip (int): number of frames per data sample
interval (int): interval between frames
is_train (bool): shuffle the video but keep the causality
test_mode (bool): testing mode, no label
"""
self.cfg = cfg
self.stage = stage
self.root_path = root_path
self.s3_path = s3_path
self.list_file = list_file
self.category_file = category_file
self.frames_per_clip = frames_per_clip
self.interval = interval
self.num_clips = num_clips
self.is_train = is_train
self.test_mode = test_mode
self.num_classes = num_classes
self.target_fps = target_fps
self.minibatches = minibatches
self.data_percentage = data_percentage
# self.class_names = class_names if (class_names is not None) else None
self.tokenizer = tokenizer
self.tokenizer_name = tokenizer_name
self.transform = self._timesformer_transform() if timesformer_aug else self._transform()
self.use_ceph = use_ceph
if self.use_ceph:
# get dataset
# dataset_name = self.root_path.split('/')[-2]
self.data_path = self.s3_path
print('debug info for {} {} '.format(self.cfg.DATASETS.DATASET_NAME, self.data_path))
from uniperceiver.datasets import TCSLoader
self.tcs_loader = TCSLoader(tcs_conf_path)
else:
self.data_path = self.root_path
_temp_list =self.load_data(self.cfg)
self.video_list = pa.array(_temp_list)
if comm.is_main_process():
import sys
print(f"!!! Dataset {self.cfg.DATASETS.DATASET_NAME} with task {self.cfg.DATASETS.TASK_TYPE}:")
print('!!! length of _temp_list: ', len(_temp_list))
print('!!! size of _temp_list: ', sys.getsizeof(_temp_list))
print('!!! size of pa database: ', sys.getsizeof(self.video_list))
del _temp_list
self.testing_multi_view = self.cfg.DATALOADER.get('MULTI_VEIW', 'v0')
self.temporal_num_view = self.cfg.DATALOADER.get('MULTI_VEIW_NUM', 1)
self.random_stride = self.cfg.DATALOADER.get('RANDON_STRIDE', False)
if self.test_mode:
self.frames_per_clip = int(self.frames_per_clip*self.temporal_num_view)
self.interval = int(self.interval/self.temporal_num_view)
self.task_info = {
'task_type' : self.cfg.DATASETS.TASK_TYPE,
'dataset_name' : self.cfg.DATASETS.DATASET_NAME,
'batch_size' : self.cfg.DATALOADER.TRAIN_BATCH_SIZE if self.stage == 'train' else self.cfg.DATALOADER.TEST_BATCH_SIZE,
'sampling_weight': self.cfg.DATALOADER.SAMPLING_WEIGHT,
}
self.target_set = self.cfg.DATASETS.TARGET_SET
def _transform(self):
assert False, 'use timesformer augmentation'
transforms = [
Lambda(lambda frames: torch.stack([ToTensor()(frame.convert("RGB")) for frame in frames])),
]
if self.test_mode:
transforms.extend([
RandomResizedCrop(224, scale=(0.75, 0.75), ratio=(1.0, 1.0)),
# CenterCrop(224)
# RandomApply(torch.nn.ModuleList([ColorJitter(0.4, 0.4, 0.4)]), 0.8),
])
else:
transforms.extend([
# scale jitter as in vivit: (0.9, 1.33)
RandomResizedCrop(224, scale=(0.56, 0.95), ratio=(1.0, 1.0)),
RandomHorizontalFlip(),
# only p=0.8 is specified in vivit paper, using deit default parameters
RandomApply(torch.nn.ModuleList([ColorJitter(0.4, 0.4, 0.4)]), 0.8),
])
transforms.append(
# Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
# change to imagenet default value to keep consistency with pretrained parameters
Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
)
return Compose(transforms)
def _timesformer_transform(self):
transforms = [
Lambda(lambda frames: torch.stack([ToTensor()(frame.convert("RGB")) for frame in frames])),
]
if self.test_mode:
test_scale = self.cfg.MODEL.IMG_INPUT_SIZE
transforms.extend([
Lambda(lambda frames: random_short_side_scale_jitter(frames, test_scale, test_scale)[0]),
Lambda(lambda images: torch.stack([uniform_crop(images, test_scale, i)[0] for i in range(3)], 0))
])
else:
min_scale = int((256 / 224)*self.cfg.MODEL.IMG_INPUT_SIZE)
max_scale = int((320 / 224)*self.cfg.MODEL.IMG_INPUT_SIZE)
transforms.extend([
# Lambda(lambda frames: random_short_side_scale_jitter(frames, 256, 320)[0].unsqueeze(0)),
Lambda(lambda frames: random_short_side_scale_jitter(frames, min_scale, max_scale)[0].unsqueeze(0)),
RandomHorizontalFlip(),
RandomCrop(self.cfg.MODEL.IMG_INPUT_SIZE)
])
transforms.append(
# Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
# change to imagenet default value to keep consistency with pretrained parameters
# Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
)
return Compose(transforms)
@classmethod
def from_config(cls, cfg, stage: str = "train"):
if 'SLURM_PROCID' in os.environ:
tcs_conf_path = cfg.DATALOADER.get("TCS_CONF_PATH", "petreloss.config")
else:
# dev machine
tcs_conf_path = "slurm_tools/petreloss_local.config"
ret = {
"cfg": cfg,
"stage": stage,
"list_file": os.path.join(cfg.DATALOADER.ANNO_FOLDER, cfg.DATALOADER.ANNO_FILE),
"category_file": os.path.join(cfg.DATALOADER.ANNO_FOLDER, "category_mapping.txt"),
"root_path": os.path.join(cfg.DATALOADER.FEATS_FOLDER, "training" if stage == "train" else "validation"),
"s3_path": os.path.join(cfg.DATALOADER.S3_PATH, "training" if stage == "train" else "validation"),
"frames_per_clip": cfg.DATALOADER.FRAMES_PER_CLIP,
"interval": cfg.DATALOADER.STRIDE,
"num_clips": 1 if stage == 'train' else cfg.INFERENCE.NUM_VIEWS,
"is_train": stage == 'train',
"test_mode": stage != 'train',
"num_classes": cfg.MODEL.NUM_CLASSES,
"timesformer_aug": cfg.DATALOADER.TIMESFORMER_AUG,
"minibatches": cfg.DATALOADER.MINI_BATCHES,
"use_ceph": getattr(cfg.DATALOADER, 'USE_CEPH', False),
"tcs_conf_path": tcs_conf_path,
"data_percentage": cfg.DATALOADER.DATA_PERCENTAGE,
}
ret['tokenizer'] = ClipTokenizer()
ret['tokenizer_name'] = "clip"
return ret
def load_data(self, cfg):
# usualy it is [video_id, num_frames, class_idx]
# or [video_id, start_frame, end_frame, list of class_idx]
self.cls2idx = dict()
self.idx2cls = dict()
self.class_names = list()
with open(self.category_file, 'r') as f:
for line in f.readlines():
class_name, idx = line.strip().split('\t')
# for annotations
class_name = class_name.replace(" ", "_") # replace(" ", "_") for kinetics dataset
self.cls2idx[class_name] = int(idx)
self.idx2cls[int(idx)] = class_name
# processed_name = class_name.replace("_", " ").lower()
# if cfg.NAME in ["K700", "K400"]:
# processed_name = processed_name.replace("american football", "football").replace("(", "").replace(")", "")
# self.class_names.append(processed_name)
# self.class_name_tokens = [np.array(self.tokenizer.encode(x + " <|endoftext|>"), dtype=np.int64) for x in self.class_names]
# self.class_name_type_tokens = [np.zeros(len(x), dtype=np.int64) for x in self.class_name_tokens]
# load the exclude list
# TODO: move this to the config file
exclude_list = list()
if os.path.exists(os.path.join(os.path.dirname(self.list_file), "exclude_list.txt")):
with open(os.path.join(os.path.dirname(self.list_file), "exclude_list.txt"), 'r') as f:
exclude_list = list(f)
exclude_list = [t.strip() for t in exclude_list]
video_list = []
count = 0
with open(self.list_file) as f:
data_file = json.load(f)
for name, info in data_file['database'].items():
# if count > 1000:
# break
# else:
# count =+ 1
video_path = os.path.join(self.data_path, info["annotations"]['label'], name+cfg.DATALOADER.FILE_EXTENSION)
# program will stop if there isn't an exclude list!
if os.path.basename(video_path) in exclude_list:
continue
if (self.is_train and info['subset'] == "training") or (not self.is_train and info['subset'] == "validation") :
inst = {
"video_path" : video_path,
"id": name
}
# if not self.test_mode:
label = info['annotations']['label']
inst["target_label"] = label
assert label in self.cls2idx
video_list.append(inst)
if self.is_train and self.data_percentage < 1.0:
video_dict = dict()
for video in video_list:
if video["target_label"] not in video_dict:
video_dict[video["target_label"]] = list()
video_dict[video["target_label"]].append(video)
new_list = list()
for k, v in video_dict.items():
new_list.extend(random.sample(v, k=int(len(v)*self.data_percentage)+1))
video_list = new_list
num = len(video_list)
print("The number of videos is {}".format(num), flush=True)
assert (num > 0)
return video_list
def _sample_indices(self, total_frames, fps):
"""
Used for training.
Args:
- record (VideoRecord):
Returns:
list: frame index, index starts from 1.
"""
if self.random_stride:
interval = random.sample([8, 16, 32], k=1)[0]
else:
interval = self.interval
frame_idx = np.asarray(random_clip(total_frames, interval * fps / self.target_fps , self.frames_per_clip))
return frame_idx
def _get_val_indices(self, total_frames, fps):
max_frame_idx = total_frames - 1
sample_pos = max(0, 1 + max_frame_idx - int(self.interval * fps / self.target_fps * self.frames_per_clip))
start_list = np.linspace(0, sample_pos - 1, num=self.num_clips, dtype=int)
frame_idx = []
for start_idx in start_list.tolist():
# ! changed by zhujinguo for torch.cat multi-views
ids = [int(idx * self.interval * fps / self.target_fps + start_idx)%total_frames for idx in range(self.frames_per_clip)]
ids = [x for x in ids if x < total_frames]
frame_idx.append(ids)
return frame_idx
def __getitem__(self, index):
for i_try in range(100):
try:
record = self.video_list[index].as_py()
if self.use_ceph:
container = av.open(io.BytesIO(self.tcs_loader.client.get(record["video_path"])))
else:
container = av.open(record["video_path"])
# container.streams.video[0].thread_type = "AUTO"
stream = container.streams.video[0]
total_frames = stream.frames
fps = float(container.streams.video[0].average_rate)
if total_frames == 0:
# it returns 0 if not know, but that doesn't mean the video is null
for frame in container.decode(stream):
total_frames += 1
container.close()
container = av.open(record["video_path"])
stream = container.streams.video[0]
except Exception as e:
print(
"Failed to load video from {} with error {} ; trial {}".format(
record["video_path"], e, i_try
)
)
# let's try another one
index = random.randint(0, len(self.video_list) - 1)
continue
if self.is_train:
indices = [self._sample_indices(total_frames, fps)]
else:
indices = self._get_val_indices(total_frames, fps)
all_index = set()
for index in indices:
all_index = all_index.union(set(index))
start_index = min(all_index)
num_frames = len(all_index)
images = dict()
fetched = 0
for frame in container.decode(stream):
if frame.index not in all_index or frame.index in images:
continue
images[frame.index] = frame.to_rgb().to_image()
last = frame.index
fetched += 1
if fetched == num_frames:
break
container.close()
video_data = list()
for ind in indices:
seq = list()
for i in ind:
if i in images:
seq.append(images[i])
else:
seq.append(images[last])
video_data.append(self.transform(seq))
video_data = torch.cat(video_data, dim=0)
# num_views, num_frames, 3, 224, 224
if not self.is_train:
if self.testing_multi_view == 'v1' and self.temporal_num_view > 1:
video_data = video_data.reshape(video_data.shape[0] * self.temporal_num_view, -1, *video_data.shape[-3:])
num_frames = num_frames // self.temporal_num_view
elif self.testing_multi_view == 'v2' and self.temporal_num_view > 1:
video_data = video_data.reshape(video_data.shape[0], -1, self.temporal_num_view,
*video_data.shape[-3:]).transpose(1, 2).reshape(video_data.shape[0] * self.temporal_num_view, -1,
*video_data.shape[-3:])
num_frames = num_frames // self.temporal_num_view
ret = {
'input_sample':[
{
'data': video_data, 'invalid_mask': None, 'modality': 'video', 'data_type': 'input',
'sample_info':{
'id': record['id'],
'path': record['video_path'],
'num_frames': num_frames,
'num_views': video_data.shape[0],
'cat_along_first_dim': True,
}
}
],
'target_sample': [],
'target_idx': [self.cls2idx[record['target_label']]],
'target_set': copy.deepcopy(self.target_set),
'task_info': copy.deepcopy(self.task_info)
}
# dict_as_tensor(ret)
return ret
def __len__(self):
return len(self.video_list)
|