File size: 24,753 Bytes
32b542e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import math
import numpy as np
import torch
import numpy as np
from PIL import Image
# pytorch=1.7.1
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
# pip install opencv-python
import cv2
import random
try:
import ffmpeg
except:
pass
import av
import math
def random_short_side_scale_jitter(
images, min_size, max_size, boxes=None, inverse_uniform_sampling=False
):
"""
Perform a spatial short scale jittering on the given images and
corresponding boxes.
Args:
images (tensor): images to perform scale jitter. Dimension is
`num frames` x `channel` x `height` x `width`.
min_size (int): the minimal size to scale the frames.
max_size (int): the maximal size to scale the frames.
boxes (ndarray): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
inverse_uniform_sampling (bool): if True, sample uniformly in
[1 / max_scale, 1 / min_scale] and take a reciprocal to get the
scale. If False, take a uniform sample from [min_scale, max_scale].
Returns:
(tensor): the scaled images with dimension of
`num frames` x `channel` x `new height` x `new width`.
(ndarray or None): the scaled boxes with dimension of
`num boxes` x 4.
"""
if inverse_uniform_sampling:
size = int(
round(1.0 / np.random.uniform(1.0 / max_size, 1.0 / min_size))
)
else:
size = int(round(np.random.uniform(min_size, max_size)))
height = images.shape[2]
width = images.shape[3]
if (width <= height and width == size) or (
height <= width and height == size
):
return images, boxes
new_width = size
new_height = size
if width < height:
new_height = int(math.floor((float(height) / width) * size))
if boxes is not None:
boxes = boxes * float(new_height) / height
else:
new_width = int(math.floor((float(width) / height) * size))
if boxes is not None:
boxes = boxes * float(new_width) / width
return (
torch.nn.functional.interpolate(
images,
size=(new_height, new_width),
mode="bilinear",
align_corners=False,
),
boxes,
)
def crop_boxes(boxes, x_offset, y_offset):
"""
Peform crop on the bounding boxes given the offsets.
Args:
boxes (ndarray or None): bounding boxes to peform crop. The dimension
is `num boxes` x 4.
x_offset (int): cropping offset in the x axis.
y_offset (int): cropping offset in the y axis.
Returns:
cropped_boxes (ndarray or None): the cropped boxes with dimension of
`num boxes` x 4.
"""
cropped_boxes = boxes.copy()
cropped_boxes[:, [0, 2]] = boxes[:, [0, 2]] - x_offset
cropped_boxes[:, [1, 3]] = boxes[:, [1, 3]] - y_offset
return cropped_boxes
def random_crop(images, size, boxes=None):
"""
Perform random spatial crop on the given images and corresponding boxes.
Args:
images (tensor): images to perform random crop. The dimension is
`num frames` x `channel` x `height` x `width`.
size (int): the size of height and width to crop on the image.
boxes (ndarray or None): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
Returns:
cropped (tensor): cropped images with dimension of
`num frames` x `channel` x `size` x `size`.
cropped_boxes (ndarray or None): the cropped boxes with dimension of
`num boxes` x 4.
"""
if images.shape[2] == size and images.shape[3] == size:
return images, None
height = images.shape[2]
width = images.shape[3]
y_offset = 0
if height > size:
y_offset = int(np.random.randint(0, height - size))
x_offset = 0
if width > size:
x_offset = int(np.random.randint(0, width - size))
cropped = images[
:, :, y_offset : y_offset + size, x_offset : x_offset + size
]
cropped_boxes = (
crop_boxes(boxes, x_offset, y_offset) if boxes is not None else None
)
return cropped, cropped_boxes
def horizontal_flip(prob, images, boxes=None):
"""
Perform horizontal flip on the given images and corresponding boxes.
Args:
prob (float): probility to flip the images.
images (tensor): images to perform horizontal flip, the dimension is
`num frames` x `channel` x `height` x `width`.
boxes (ndarray or None): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
Returns:
images (tensor): images with dimension of
`num frames` x `channel` x `height` x `width`.
flipped_boxes (ndarray or None): the flipped boxes with dimension of
`num boxes` x 4.
"""
if boxes is None:
flipped_boxes = None
else:
flipped_boxes = boxes.copy()
if np.random.uniform() < prob:
images = images.flip((-1))
width = images.shape[3]
if boxes is not None:
flipped_boxes[:, [0, 2]] = width - boxes[:, [2, 0]] - 1
return images, flipped_boxes
def uniform_crop(images, size, spatial_idx, boxes=None):
"""
Perform uniform spatial sampling on the images and corresponding boxes.
Args:
images (tensor): images to perform uniform crop. The dimension is
`num frames` x `channel` x `height` x `width`.
size (int): size of height and weight to crop the images.
spatial_idx (int): 0, 1, or 2 for left, center, and right crop if width
is larger than height. Or 0, 1, or 2 for top, center, and bottom
crop if height is larger than width.
boxes (ndarray or None): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
Returns:
cropped (tensor): images with dimension of
`num frames` x `channel` x `size` x `size`.
cropped_boxes (ndarray or None): the cropped boxes with dimension of
`num boxes` x 4.
"""
assert spatial_idx in [0, 1, 2]
height = images.shape[2]
width = images.shape[3]
y_offset = int(math.ceil((height - size) / 2))
x_offset = int(math.ceil((width - size) / 2))
if height > width:
if spatial_idx == 0:
y_offset = 0
elif spatial_idx == 2:
y_offset = height - size
else:
if spatial_idx == 0:
x_offset = 0
elif spatial_idx == 2:
x_offset = width - size
cropped = images[
:, :, y_offset : y_offset + size, x_offset : x_offset + size
]
cropped_boxes = (
crop_boxes(boxes, x_offset, y_offset) if boxes is not None else None
)
return cropped, cropped_boxes
def uniform_crop_2crops(images, size, spatial_idx, boxes=None):
"""
Perform uniform spatial sampling on the images and corresponding boxes.
Args:
images (tensor): images to perform uniform crop. The dimension is
`num frames` x `channel` x `height` x `width`.
size (int): size of height and weight to crop the images.
spatial_idx (int): 0, 1, or 2 for left, center, and right crop if width
is larger than height. Or 0, 1, or 2 for top, center, and bottom
crop if height is larger than width.
boxes (ndarray or None): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
Returns:
cropped (tensor): images with dimension of
`num frames` x `channel` x `size` x `size`.
cropped_boxes (ndarray or None): the cropped boxes with dimension of
`num boxes` x 4.
"""
assert spatial_idx in [0, 1, 2]
height = images.shape[2]
width = images.shape[3]
if height > width:
x_offset = 0
if height > size * 2:
if spatial_idx == 0:
y_offset = int((height - size * 2) // 2)
elif spatial_idx == 1:
y_offset = int(height - size - ((height - size * 2) // 2))
else:
if spatial_idx == 0:
y_offset = 0
elif spatial_idx == 1:
y_offset = height - size
else:
y_offset = 0
if width > size * 2:
if spatial_idx == 0:
x_offset = int((width - size * 2) // 2)
elif spatial_idx == 1:
x_offset = int(width - size - ((width - size * 2) // 2))
else:
if spatial_idx == 0:
x_offset = 0
elif spatial_idx == 1:
x_offset = width - size
cropped = images[
:, :, y_offset : y_offset + size, x_offset : x_offset + size
]
cropped_boxes = (
crop_boxes(boxes, x_offset, y_offset) if boxes is not None else None
)
return cropped, cropped_boxes
def clip_boxes_to_image(boxes, height, width):
"""
Clip an array of boxes to an image with the given height and width.
Args:
boxes (ndarray): bounding boxes to perform clipping.
Dimension is `num boxes` x 4.
height (int): given image height.
width (int): given image width.
Returns:
clipped_boxes (ndarray): the clipped boxes with dimension of
`num boxes` x 4.
"""
clipped_boxes = boxes.copy()
clipped_boxes[:, [0, 2]] = np.minimum(
width - 1.0, np.maximum(0.0, boxes[:, [0, 2]])
)
clipped_boxes[:, [1, 3]] = np.minimum(
height - 1.0, np.maximum(0.0, boxes[:, [1, 3]])
)
return clipped_boxes
def blend(images1, images2, alpha):
"""
Blend two images with a given weight alpha.
Args:
images1 (tensor): the first images to be blended, the dimension is
`num frames` x `channel` x `height` x `width`.
images2 (tensor): the second images to be blended, the dimension is
`num frames` x `channel` x `height` x `width`.
alpha (float): the blending weight.
Returns:
(tensor): blended images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
return images1 * alpha + images2 * (1 - alpha)
def grayscale(images):
"""
Get the grayscale for the input images. The channels of images should be
in order BGR.
Args:
images (tensor): the input images for getting grayscale. Dimension is
`num frames` x `channel` x `height` x `width`.
Returns:
img_gray (tensor): blended images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
# R -> 0.299, G -> 0.587, B -> 0.114.
img_gray = torch.tensor(images)
gray_channel = (
0.299 * images[:, 2] + 0.587 * images[:, 1] + 0.114 * images[:, 0]
)
img_gray[:, 0] = gray_channel
img_gray[:, 1] = gray_channel
img_gray[:, 2] = gray_channel
return img_gray
def color_jitter(images, img_brightness=0, img_contrast=0, img_saturation=0):
"""
Perfrom a color jittering on the input images. The channels of images
should be in order BGR.
Args:
images (tensor): images to perform color jitter. Dimension is
`num frames` x `channel` x `height` x `width`.
img_brightness (float): jitter ratio for brightness.
img_contrast (float): jitter ratio for contrast.
img_saturation (float): jitter ratio for saturation.
Returns:
images (tensor): the jittered images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
jitter = []
if img_brightness != 0:
jitter.append("brightness")
if img_contrast != 0:
jitter.append("contrast")
if img_saturation != 0:
jitter.append("saturation")
if len(jitter) > 0:
order = np.random.permutation(np.arange(len(jitter)))
for idx in range(0, len(jitter)):
if jitter[order[idx]] == "brightness":
images = brightness_jitter(img_brightness, images)
elif jitter[order[idx]] == "contrast":
images = contrast_jitter(img_contrast, images)
elif jitter[order[idx]] == "saturation":
images = saturation_jitter(img_saturation, images)
return images
def brightness_jitter(var, images):
"""
Perfrom brightness jittering on the input images. The channels of images
should be in order BGR.
Args:
var (float): jitter ratio for brightness.
images (tensor): images to perform color jitter. Dimension is
`num frames` x `channel` x `height` x `width`.
Returns:
images (tensor): the jittered images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
alpha = 1.0 + np.random.uniform(-var, var)
img_bright = torch.zeros(images.shape)
images = blend(images, img_bright, alpha)
return images
def contrast_jitter(var, images):
"""
Perfrom contrast jittering on the input images. The channels of images
should be in order BGR.
Args:
var (float): jitter ratio for contrast.
images (tensor): images to perform color jitter. Dimension is
`num frames` x `channel` x `height` x `width`.
Returns:
images (tensor): the jittered images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
alpha = 1.0 + np.random.uniform(-var, var)
img_gray = grayscale(images)
img_gray[:] = torch.mean(img_gray, dim=(1, 2, 3), keepdim=True)
images = blend(images, img_gray, alpha)
return images
def saturation_jitter(var, images):
"""
Perfrom saturation jittering on the input images. The channels of images
should be in order BGR.
Args:
var (float): jitter ratio for saturation.
images (tensor): images to perform color jitter. Dimension is
`num frames` x `channel` x `height` x `width`.
Returns:
images (tensor): the jittered images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
alpha = 1.0 + np.random.uniform(-var, var)
img_gray = grayscale(images)
images = blend(images, img_gray, alpha)
return images
def lighting_jitter(images, alphastd, eigval, eigvec):
"""
Perform AlexNet-style PCA jitter on the given images.
Args:
images (tensor): images to perform lighting jitter. Dimension is
`num frames` x `channel` x `height` x `width`.
alphastd (float): jitter ratio for PCA jitter.
eigval (list): eigenvalues for PCA jitter.
eigvec (list[list]): eigenvectors for PCA jitter.
Returns:
out_images (tensor): the jittered images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
if alphastd == 0:
return images
# generate alpha1, alpha2, alpha3.
alpha = np.random.normal(0, alphastd, size=(1, 3))
eig_vec = np.array(eigvec)
eig_val = np.reshape(eigval, (1, 3))
rgb = np.sum(
eig_vec * np.repeat(alpha, 3, axis=0) * np.repeat(eig_val, 3, axis=0),
axis=1,
)
out_images = torch.zeros_like(images)
for idx in range(images.shape[1]):
out_images[:, idx] = images[:, idx] + rgb[2 - idx]
return out_images
def color_normalization(images, mean, stddev):
"""
Perform color nomration on the given images.
Args:
images (tensor): images to perform color normalization. Dimension is
`num frames` x `channel` x `height` x `width`.
mean (list): mean values for normalization.
stddev (list): standard deviations for normalization.
Returns:
out_images (tensor): the noramlized images, the dimension is
`num frames` x `channel` x `height` x `width`.
"""
assert len(mean) == images.shape[1], "channel mean not computed properly"
assert (
len(stddev) == images.shape[1]
), "channel stddev not computed properly"
out_images = torch.zeros_like(images)
for idx in range(len(mean)):
out_images[:, idx] = (images[:, idx] - mean[idx]) / stddev[idx]
return out_images
class RawVideoExtractorCV2():
def __init__(self, centercrop=False, size=224, framerate=-1, ):
self.centercrop = centercrop
self.size = size
self.framerate = framerate
self.transform = self._transform(self.size)
# Normalize((0.48145466, 0.4578275, 0.40821073), ),
self.mean = np.array((0.48145466, 0.4578275, 0.40821073)).reshape(1, 1, 1, 3) * 255
self.std = np.array((0.26862954, 0.26130258, 0.27577711)).reshape(1, 1, 1, 3) * 255
def _transform(self, n_px):
return Compose([
Resize(n_px, interpolation=Image.BICUBIC),
CenterCrop(n_px),
lambda image: image.convert("RGB"),
ToTensor(),
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
def video_to_tensor(self, video_file, preprocess, sample_fp=0, num_frames=50, sample_offset=0, start_time=None, end_time=None, impl="pyav"):
if start_time is not None or end_time is not None:
assert isinstance(start_time, int) and isinstance(end_time, int) \
and start_time > -1 and end_time > start_time
# assert sample_fp > -1
if impl == "cv2":
# Samples a frame sample_fp X frames.
cap = cv2.VideoCapture(video_file)
frameCount = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
total_duration = (frameCount + fps - 1) // fps
start_sec, end_sec = 0, total_duration
if start_time is not None:
start_sec, end_sec = start_time, end_time if end_time <= total_duration else total_duration
cap.set(cv2.CAP_PROP_POS_FRAMES, int(start_time * fps))
ret = True
images, included = [], []
if sample_fp > -1:
if impl == "cv2":
# sample by fixed interval
interval = 1
if sample_fp > 0:
interval = fps // sample_fp
else:
sample_fp = fps
if interval == 0: interval = 1
inds = [ind for ind in np.arange(0, fps, interval)]
assert len(inds) >= sample_fp
inds = inds[:sample_fp]
offset = min(sample_offset, interval - 1) if sample_offset > 0 else random.randint(0, interval - 1)
for sec in np.arange(start_sec, end_sec + 1):
if not ret: break
# sec_base = int(sec * fps)
sec_base = int(sec * fps + offset)
for ind in inds:
cap.set(cv2.CAP_PROP_POS_FRAMES, sec_base + ind)
ret, frame = cap.read()
if not ret: break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
images.append(preprocess(Image.fromarray(frame_rgb).convert("RGB")))
if len(images) > 0:
video_data = torch.tensor(np.stack(images))
else:
video_data = torch.zeros(1)
cap.release()
elif impl == "ffmpeg":
if sample_fp == 0:
sample_fp = 1000 # sample every frame
out, _ = (
ffmpeg
.input(video_file)
.filter('select', 'isnan(prev_selected_t)+gte(t-prev_selected_t,{})'.format(1 / sample_fp))
.filter('crop', 'min(in_w, in_h)', 'min(in_w, in_h)', '(in_w - min(in_w, in_h)) / 2', '(in_h - min(in_w, in_h)) / 2') # w, h, x, y, center crop
.filter('scale', self.size, self.size) # resize
.output('pipe:', format='rawvideo', pix_fmt='rgb24', vsync='vfr')
.global_args('-loglevel', 'quiet')
.run(capture_stdout=True)
)
video = (
np
.frombuffer(out, np.uint8)
.reshape([-1, self.size, self.size, 3])
)
video = (video - self.mean) / self.std
video_data = torch.as_tensor(video).permute(0, 3, 1, 2)
elif impl == 'pyav':
images = list()
container = av.open(video_file)
container.streams.video[0].thread_type = "AUTO"
stream = container.streams.video[0]
total_frames = stream.frames
assert total_frames != 0
duration = int(stream.duration * stream.time_base)
if sample_fp > 0:
interval = max(int(total_frames / duration / sample_fp), 1)
else:
interval = 1
for frame in container.decode(stream):
if frame.index % interval != 0:
continue
images.append(preprocess(frame.to_rgb().to_image()))
if len(images) > 0:
video_data = torch.stack(images) # th.tensor(np.stack(images))
else:
video_data = torch.zeros(1)
container.close()
else:
raise NotImplementedError
else:
if impl == "cv2":
# sample fixed number of frames
interval = max(frameCount // num_frames, 1) # this interval is int
start = min(sample_offset, interval - 1) if sample_offset > -1 else random.randint(0, interval - 1)
interval = frameCount / num_frames # the second interval is float
for i in range(num_frames):
cap.set(cv2.CAP_PROP_POS_FRAMES, start + int(i * interval))
ret, frame = cap.read()
if not ret: break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
images.append(preprocess(Image.fromarray(frame_rgb).convert("RGB")))
if len(images) > 0:
video_data = torch.tensor(np.stack(images))
else:
video_data = torch.zeros(1)
cap.release()
elif impl == "pyav":
images = list()
container = av.open(video_file)
container.streams.video[0].thread_type = "AUTO"
stream = container.streams.video[0]
total_frames = stream.frames
assert total_frames != 0
interval = max(total_frames // num_frames, 1) # this interval is int
for frame in container.decode(stream):
if frame.index % interval != 0:
continue
images.append(preprocess(frame.to_rgb().to_image()))
if len(images) > 0:
video_data = torch.stack(images) # th.tensor(np.stack(images))
else:
video_data = torch.zeros(1)
container.close()
else:
raise NotImplementedError
return {'video': video_data}
def get_video_data(self, video_path, num_frames, sample_offset, start_time=None, end_time=None):
image_input = self.video_to_tensor(video_path, self.transform, sample_fp=self.framerate, num_frames=num_frames, sample_offset=sample_offset, start_time=start_time, end_time=end_time)
return image_input
def process_raw_data(self, raw_video_data):
tensor_size = raw_video_data.size()
tensor = raw_video_data.view(-1, 1, tensor_size[-3], tensor_size[-2], tensor_size[-1])
return tensor
def process_frame_order(self, raw_video_data, frame_order=0):
# 0: ordinary order; 1: reverse order; 2: random order.
if frame_order == 0:
pass
elif frame_order == 1:
reverse_order = np.arange(raw_video_data.size(0) - 1, -1, -1)
raw_video_data = raw_video_data[reverse_order, ...]
elif frame_order == 2:
random_order = np.arange(raw_video_data.size(0))
np.random.shuffle(random_order)
raw_video_data = raw_video_data[random_order, ...]
return raw_video_data
# An ordinary video frame extractor based CV2
RawVideoExtractor = RawVideoExtractorCV2
|