File size: 19,647 Bytes
32b542e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
import time
import tqdm
import os
import json
import pickle
import sys
import copy
import numpy as np
import itertools
import random
import torch
import io
from torch.nn.parallel import DistributedDataParallel
from torch.cuda.amp import autocast
from .unified_tester import tester, dict_to_cuda, list_to_cuda, move_to_cuda
from collections import OrderedDict
from uniperceiver.evaluation import build_evaluation
import uniperceiver.utils.comm as comm
from uniperceiver.utils.engine_util import *
from .build import ENGINE_REGISTRY
from uniperceiver.datasets import (
build_standard_valtest_loader,
build_unified_train_loader,
)
from uniperceiver.utils.events import get_event_storage
from uniperceiver.utils.events import EventStorage
from omegaconf import DictConfig
from uniperceiver.losses import build_losses
from uniperceiver.optim import build_optimizer
from uniperceiver.modeling import build_model
from uniperceiver.lr_scheduler import build_lr_scheduler
from torch.cuda.amp import autocast
from uniperceiver.checkpoint import TorchCheckpointer
import logging
import math
import weakref
from uniperceiver.config import CfgNode
from . import hooks
from timm.data import Mixup
from timm.utils import ModelEma
from uniperceiver.utils.misc import NativeScalerWithGradNormCount as NativeScaler
from uniperceiver.utils.misc import ApexScalerWithGradNormCount as ApexScaler
from collections import defaultdict
from .train_loop import TrainerBase
from uniperceiver.utils.logger import setup_logger
try:
from apex import amp
APEX_INSTALLED = True
except:
print('apex has not been installed.')
APEX_INSTALLED = False
__all__ = ['UnifiedTrainer']
@ENGINE_REGISTRY.register()
class UnifiedTrainer(TrainerBase):
def __init__(self, cfg):
super().__init__()
self.logger = logging.getLogger(__name__)
if not self.logger.isEnabledFor(
logging.INFO): # setup_logger is not called for d2
setup_logger()
self.task_cfg = dict()
self.task_names = []
for task in cfg.TASKS:
name = task['NAME']
self.task_names.append(name)
# self.task_cfg[name] = new_cfg
self.task_cfg[name] = CfgNode(task)
self.cfg = cfg
# Assume these objects must be constructed in this order.
model = self.build_model(cfg)
self.logger.info("Model Creation Done")
self.apex_need_reload = False
self.optimizer = self.build_optimizer(cfg, model)
if cfg.SOLVER.APEX_FP16 and APEX_INSTALLED:
self.apex_fp16 = True
model, self.optimizer = amp.initialize(model,
self.optimizer,
opt_level=self.cfg.SOLVER.APEX_OPT_LEVEL,
master_weights=self.cfg.SOLVER.APEX_MASTER_WEIGHTS,
min_loss_scale=self.cfg.SOLVER.MIN_LOSS_SCLE,
loss_scale="dynamic")
# For training, wrap with DDP. But don't need this for inference.
if comm.get_world_size() > 1:
model = DistributedDataParallel(
model,
find_unused_parameters=cfg.find_unused_parameters,
device_ids=[comm.get_local_rank()],
broadcast_buffers=False)
self.model = model
self.model.train()
self.train_data_loader = build_train_loader(cfg, self.task_cfg, self.model)
self.val_data_loader = build_val_loader(cfg, self.task_cfg)
self.test_data_loader = build_test_loader(cfg, self.task_cfg)
if isinstance(self.train_data_loader, list):
self.iters_per_epoch_list = [
len(loader) for loader in self.train_data_loader
]
self._train_data_loader_iter_list = [
iter(loader) for loader in self.train_data_loader
]
self.iters_per_epoch = len(self.train_data_loader[0])
self._train_data_loader_iter = iter(self.train_data_loader[0])
else:
self.iters_per_epoch = len(self.train_data_loader)
self._train_data_loader_iter = iter(self.train_data_loader)
if self.val_data_loader is not None:
self.val_evaluator = build_evaluation(cfg,
cfg.INFERENCE.VAL_ANNFILE,
None)
else:
self.val_evaluator = None
if self.test_data_loader is not None:
self.test_evaluator = build_evaluation(cfg,
cfg.INFERENCE.TEST_ANNFILE,
cfg.OUTPUT_DIR)
else:
self.test_evaluator = None
self.ss_prob = 0.0
self.model_ema = None
if cfg.MODEL.MODEL_EMA:
self.model_ema = ModelEma(
self.model,
decay=cfg.MODEL.MODEL_EMA_DECAY,
device='cpu' if cfg.MODEL.MODEL_EMA_FORCE_CPU else '',
resume='')
self.checkpointer = TorchCheckpointer(
# Assume you want to save checkpoints together with logs/statistics
self.model,
self.model_ema,
cfg.OUTPUT_DIR,
trainer=weakref.proxy(self),
checkpoint_mapping=cfg.SOLVER.CHECKPOINT_MAPPING,
mapping=cfg.SOLVER.CHECKPOINT_MAP,
resume_tau=cfg.SOLVER.RESUME_TAU,
ceph_save=cfg.SOLVER.CHECKPOINT_CEPH_SAVE,
ceph_config=cfg.DATALOADER.get("TCS_CONF_PATH",
"petreloss.config"),
)
self.checkpointer.add_checkpointable('optimizer', self.optimizer)
if cfg.MODEL.MODEL_EMA:
self.checkpointer.add_checkpointable('ema_model',self.model_ema.ema)
self.start_iter = 0
self.max_iter = cfg.SOLVER.EPOCH * self.iters_per_epoch
self.register_hooks(self.build_hooks())
if cfg.SOLVER.AMP_FP16:
# Creates a GradScaler once at the beginning of training.
self.amp_scaler = NativeScaler(enabled=True, growth_interval=cfg.SOLVER.LOSS_SCALE_WINDOW)
self.amp_fp16=True
else:
self.amp_scaler = NativeScaler(enabled=False)
self.amp_fp16=False
if cfg.SOLVER.APEX_FP16 and APEX_INSTALLED:
self.amp_scaler = ApexScaler(enabled=True)
else:
self.apex_fp16 = False
self.fp16 = cfg.SOLVER.AMP_FP16 or cfg.SOLVER.APEX_FP16
self.bf16 = cfg.SOLVER.BF16
if self.fp16:
assert not self.bf16
if self.amp_scaler is not None:
self.checkpointer.add_checkpointable('amp_scaler', self.amp_scaler)
self.val_evaluator = dict()
self.test_evaluator = dict()
self.mixup_fn = dict()
for name, new_cfg in self.task_cfg.items():
if self.val_data_loader[name]:
self.val_evaluator[name] = build_evaluation(
new_cfg, new_cfg.INFERENCE.VAL_ANNFILE, cfg.OUTPUT_DIR)
else:
self.val_evaluator[name] = None
if self.test_data_loader[name]:
self.test_evaluator[name] = build_evaluation(new_cfg, new_cfg.INFERENCE.TEST_ANNFILE, cfg.OUTPUT_DIR)
else:
self.test_evaluator[name] = None
if new_cfg.DATALOADER.MIXUP > 0 or new_cfg.DATALOADER.CUTMIX > 0:
self.mixup_fn[name] = Mixup(
mixup_alpha=new_cfg.DATALOADER.MIXUP, cutmix_alpha=new_cfg.DATALOADER.CUTMIX, cutmix_minmax=None,
prob=new_cfg.DATALOADER.MIXUP_PROB, switch_prob=new_cfg.DATALOADER.MIXUP_SWITCH_PROB, mode=new_cfg.DATALOADER.MIXUP_MODE,
label_smoothing=new_cfg.DATALOADER.MIXUP_LABEL_SMOOTHING, num_classes=new_cfg.MODEL.LABELS_NUM)
else:
self.mixup_fn[name] = None
if cfg.DATALOADER.USE_WEIGHTED_SAMPLER:
# this is to avoid strange behaviors.
self.iters_per_epoch = 1
# override the previous scheduler
self.scheduler = self.build_lr_scheduler(cfg, self.optimizer, self.iters_per_epoch)
self.checkpointer.add_checkpointable('scheduler', self.scheduler)
self.accum_iter = max(1, cfg.SOLVER.ACCUM_ITER)
self.step_index = 0
self.grad_print = getattr(cfg.SOLVER, "GRAD_PRINT", False)
if self.cfg.SOLVER.GradHistogram:
assert self.cfg.SOLVER.TORCH_OPTIMIZER and self.cfg.SOLVER.PARAMS_SEPERATE
def resume_or_load(self, resume=True):
self.checkpointer.resume_or_load(self.cfg.MODEL.WEIGHTS,
resume=resume,
resume_optmizer=self.cfg.SOLVER.RESUME_OPTIMIZER)
if resume and self.checkpointer.has_checkpoint():
self.start_iter = self.iter + 1
# make apex resume work
if self.apex_fp16:
self.apex_need_reload = True
@classmethod
def build_losses(cls, cfg):
losses = {}
for task_config in cfg.TASKS:
task_config = DictConfig(task_config)
losses[task_config.NAME] = build_losses(task_config)
return losses
def build_hooks(self):
self.max_iter = self.cfg.SOLVER.MAX_ITER
cfg = self.cfg.clone()
cfg.defrost()
cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN
ret = [
hooks.IterationTimer(),
hooks.LRScheduler(),
hooks.ModelWeightsManipulating()
]
# Do PreciseBN before checkpointer, because it updates the model and need to
# be saved by checkpointer.
# This is not always the best: if checkpointing has a different frequency,
# some checkpoints may have more precise statistics than others.
if comm.is_main_process():
ret.append(hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD,
max_to_keep= cfg.SOLVER.CHECKPOINT_MAX_SAVE ))
def test_and_save_results(epoch):
eval_results = self.test(self.cfg, self.model, self.test_data_loader, self.test_evaluator, epoch)
return eval_results
def val_and_save_results(epoch):
eval_results = self.test(self.cfg, self.model, self.val_data_loader, self.val_evaluator, epoch)
return eval_results
if self.model_ema is not None:
def test_and_save_results_ema(epoch):
eval_results = self.test(self.cfg, self.model_ema.ema,
self.test_data_loader,
self.test_evaluator, epoch)
ema_results = {}
for taskname, taskresults in eval_results.items():
if isinstance(taskresults, dict):
taskresults = {
f'{k}_ema': v
for k, v in taskresults.items()
}
ema_results[taskname] = taskresults
return ema_results
def val_and_save_results_ema(epoch):
eval_results = self.test(self.cfg, self.model_ema.ema,
self.val_data_loader,
self.val_evaluator, epoch)
ema_results = {}
for taskname, taskresults in eval_results.items():
if isinstance(taskresults, dict):
taskresults = {f'{k}_ema': v for k, v in taskresults.items()}
ema_results[taskname] = taskresults
return ema_results
# Do evaluation after checkpointer, because then if it fails,
# we can use the saved checkpoint to debug.
if self.val_data_loader is not None:
ret.append(
hooks.IterEvalHook(
eval_period = cfg.SOLVER.EVAL_PERIOD,
eval_start = cfg.INFERENCE.VAL_EVAL_START,
eval_function = val_and_save_results,
stage = 'val',
multi_gpu_eval=True
))
if self.model_ema is not None:
ret.append(
hooks.IterEvalHook(
eval_period = cfg.SOLVER.EVAL_PERIOD,
eval_start = cfg.INFERENCE.VAL_EVAL_START,
eval_function = val_and_save_results_ema,
stage = 'val',
multi_gpu_eval=True
))
if self.test_data_loader is not None:
ret.append(
hooks.IterEvalHook(
eval_period = cfg.SOLVER.EVAL_PERIOD,
eval_start = cfg.INFERENCE.TEST_EVAL_START,
eval_function = test_and_save_results,
stage = 'test',
multi_gpu_eval=True
))
if self.model_ema is not None:
ret.append(
hooks.IterEvalHook(
eval_period=cfg.SOLVER.EVAL_PERIOD,
eval_start=cfg.INFERENCE.TEST_EVAL_START,
eval_function=test_and_save_results_ema,
stage='test',
multi_gpu_eval=True))
if comm.is_main_process():
# Here the default print/log frequency of each writer is used.
# run writers in the end, so that evaluation metrics are written
ret.append(hooks.PeriodicWriter(build_writers(cfg, self.max_iter), period=cfg.SOLVER.WRITE_PERIOD))
return ret
def train(self):
"""
Args:
start_iter, max_iter (int): See docs above
"""
start_iter = self.start_iter
max_iter = self.max_iter
logger = logging.getLogger(__name__)
logger.info("Starting training from iteration {}".format(start_iter))
self.iter = self.start_iter = start_iter
self.max_iter = max_iter
with EventStorage(start_iter) as self.storage:
try:
self.before_train()
for self.iter in range(start_iter, max_iter):
self.before_step()
self.run_step_torch()
self.after_step()
if self.apex_need_reload:
optimizer_state_dict = torch.load(self.checkpointer.get_checkpoint_file())['optimizer']
self.optimizer.load_state_dict(optimizer_state_dict)
self.apex_need_reload = False
self.iter += 1
except Exception:
logger.exception("Exception during training:")
raise
finally:
self.after_train()
@classmethod
def build_model(cls, cfg):
model = build_model(cfg)
logger = logging.getLogger(__name__)
logger.info("Model:\n{}".format(model))
return model
@classmethod
def build_optimizer(cls, cfg, model):
logger = logging.getLogger(__name__)
logger.info("building optimizer...")
return build_optimizer(cfg, model)
@classmethod
def build_lr_scheduler(cls, cfg, optimizer, iters_per_epoch):
logger = logging.getLogger(__name__)
logger.info("building lr_scheduler...")
return build_lr_scheduler(cfg, optimizer, iters_per_epoch)
def run_step_torch(self):
if self.accum_iter > 1:
for micro_step in range(self.accum_iter):
self.micro_step = micro_step
self.run_min_batch()
else:
self.micro_step = 0
self.run_min_batch()
def run_min_batch(self):
timer_fn = time.perf_counter
assert self.model.training, "[SimpleTrainer] model was changed to eval mode!"
torch.cuda.synchronize()
start = timer_fn()
data = get_batch_data(self.cfg, self._train_data_loader_iter, self.train_data_loader)
data_time = time.perf_counter() - start
task = data['task_info']['task_name']
data = move_to_cuda(data)
#TODO: task specifix code, move into model
if self.mixup_fn[task] is not None:
# imagenet
data['input_sample_list'][0]["data"], data[
'target_idx_list'][0] = self.mixup_fn[task](
data['input_sample_list'][0]["data"], data["target_idx_list"][0])
if not self.amp_fp16:
losses_dict = self.model(data)
else:
with autocast(self.amp_fp16):
losses_dict = self.model(data)
losses = sum(losses_dict.values())
# for accum iter
losses /= self.accum_iter
total_grad = self.amp_scaler(losses, self.optimizer, clip_grad=self.cfg.SOLVER.GRAD_CLIP,
parameters=self.model.parameters(), create_graph=False,
update_grad=(self.micro_step + 1 == self.accum_iter), fp16=self.fp16, iter=self.iter,
min_loss_scale=self.cfg.SOLVER.MIN_LOSS_SCLE,
loss_scale_window=self.cfg.SOLVER.LOSS_SCALE_WINDOW)
if self.micro_step + 1 != self.accum_iter:
return
if self.micro_step + 1 == self.accum_iter:
write_metrics(losses_dict, data_time, task + '/')
if comm.is_main_process():
storage = get_event_storage()
if torch.logical_or(total_grad.isnan(), total_grad.isinf()):
logger = logging.getLogger(__name__)
logger.info('grad to nan or inf in task {} {}'.format(task, total_grad))
storage.put_scalar("total_grad", total_grad, smoothing_hint=False)
if self.apex_need_reload:
pass
else:
self.amp_scaler.step(self.optimizer)
if comm.is_main_process():
storage.put_scalar("amp_scale", self.amp_scaler.get_scale(), smoothing_hint=False)
if hasattr(comm.unwrap_model(self.model).loss_prepare, 'temperature_dict'):
if isinstance(comm.unwrap_model(self.model).loss_prepare, torch.nn.ModuleList):
temperature_dict = comm.unwrap_model(self.model).loss_prepare[-1].temperature_dict
else:
temperature_dict = comm.unwrap_model(self.model).loss_prepare.temperature_dict
storage.put_scalars(**temperature_dict, smoothing_hint=False)
if self.amp_fp16:
self.amp_scaler.update()
self.optimizer.zero_grad()
if self.model_ema is not None:
self.model_ema.update(self.model)
torch.cuda.synchronize()
def cast_layers(self):
logger = self.logger
if self.cfg.MODEL.LN_FP32:
logger.info("cast LN to fp32")
def cast_ln_fp32(module):
if isinstance(module, CustomLayernorm):
module.float()
self.model_engine.module.apply(cast_ln_fp32)
if self.iter == 0:
comm.unwrap_model(self.model).operatedweight()
def test(self, cfg, model, test_data_loader, evaluator, epoch):
return tester(self.task_cfg, model, test_data_loader, evaluator, epoch, self.amp_fp16, self.apex_fp16)
|