File size: 1,654 Bytes
32b542e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

import os
import numpy as np
from .func_feats import boxes_to_locfeats

import pdb

def read_lines(path):
    with open(path, 'r') as fid:
        lines = [line.strip() for line in fid]
    return lines
    
def read_lines_set(path):
    lines = read_lines(path)
    lines = set(lines)
    return lines

# "features", "cls_prob", "boxes", "image_h", "image_w"
def read_np(path, preload=None):
    if preload:
        content = preload[path]
    else:
        content = np.load(path, allow_pickle=True)
    if isinstance(content, np.ndarray):
        return { "features": content } 

    keys = content.keys()
    if len(keys) == 1:
        return { "features": content[list(keys)[0]] }
    return content

def read_np_bbox(path, max_feat_num, use_global_v=True, preload=None):
    content = read_np(path, preload)
    features = content['features'][0:max_feat_num - 1]
    boxes = content['boxes'][0:max_feat_num - 1]
    image_h = content['image_h'][0]
    image_w = content['image_w'][0]
    num_boxes = len(boxes)

    if use_global_v:
        g_feat = np.sum(features, axis=0) / num_boxes
        features = np.concatenate([np.expand_dims(g_feat, axis=0), features], axis=0)

    image_locations = boxes_to_locfeats(boxes, image_w, image_h)
    if use_global_v:
        g_location = np.array([0, 0, 1, 1, 1])
        image_locations = np.concatenate([np.expand_dims(g_location, axis=0), image_locations], axis=0)
    return features, image_locations



def load_vocab(path):
    if len(path) == 0:
        return None
    vocab = ['.']
    with open(path, 'r') as fid:
        for line in fid:
            vocab.append(line.strip())
    return vocab