File size: 9,764 Bytes
32b542e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
# Copyright (c) 2019, AImageLab
import torch
from torch import nn
import torch.nn.functional as F
from torch.autograd import Variable
from uniperceiver.config import configurable
from uniperceiver.functional import expand_tensor
from .decode_strategy import DecodeStrategy
from .build import DECODE_STRATEGY_REGISTRY
from uniperceiver.utils import comm
import math
from torch.cuda.amp import autocast
@DECODE_STRATEGY_REGISTRY.register()
class CaptionBeamSearcherV3(DecodeStrategy):
def data_half(self, data):
if self.fp16:
for k, v in data.items():
if isinstance(v, torch.Tensor) and v.dtype == torch.float32:
data[k] = v.half()
# print(k)
return data
else:
return data
def _select(self, batch_size, beam_size, t, candidate_logprob):
selected_logprob, selected_idx = torch.sort(candidate_logprob.view(batch_size, -1), -1, descending=True)
selected_logprob, selected_idx = selected_logprob[:, :beam_size], selected_idx[:, :beam_size]
return selected_idx, selected_logprob
def _expand_state(self, states, selected_beam, batch_size, beam_size, cur_beam_size):
for i in range(len(states)):
shape = list(states[i].shape)
beam = selected_beam
for _ in shape[1:]:
beam = beam.unsqueeze(-1)
states[i] = torch.gather(states[i].view(*([batch_size, cur_beam_size] + shape[1:])), 1,
beam.expand(*([batch_size, beam_size] + shape[1:])))
states[i] = states[i].view(*([-1, ] + shape[1:]))
def _forward(self, batched_inputs, model):
# only two caption tasks are generative task now!
# for caption tasks, the computations are:
# 1. encode the image sequence; save for further use.
# 2. if no cached encoded dictionary, encode the dictionary and save; otherwise reuse cache.
# 3. compute attention. We use cross attention insted of self attention.
# batched_inputs[kfg.IMAGE] = batched_inputs.pop(kfg.VIDEO).squeeze(1)
inputs = batched_inputs
inputs = self.data_half(inputs)
out_size = batched_inputs.get('OUT_SIZE', 1)
task_info = inputs['task_info']
bs = task_info['batch_size']
if isinstance(bs, torch.Tensor):
bs = bs.item()
image_input = inputs['input_sample_list']
vocab_input = inputs['shared_target_sets'][self.vocab_name]
# 1. encode the image/video sequence.
moe_embedding = None
for image_data in image_input:
if 'moe_embedding' in image_data:
moe_embedding = image_data['moe_embedding']
image_encode = model._forward_data(image_input, task_info=task_info, return_all=True)[0]['data']
# 2. encode the vocabulary - if no pre-computed, add that into input
if getattr(self, 'pre_computed_word_embeds', None) is None:
vocab_encode = model._forward_data(vocab_input, task_info=task_info, return_all=False)[0]
self.pre_computed_word_embeds = vocab_encode
else:
vocab_encode = self.pre_computed_word_embeds
# 3. compute attention
comm._CAPTION_GEN_MODE = True
task_info.update({"prefix_spe_before_fuse": False})
beam_size = self.beam_size
log_probs = []
selected_words = None
seq_logprob = torch.zeros((bs, 1, 1)).cuda() # bs, 1, 1
seq_mask = torch.ones((bs, beam_size, 1)).cuda()
wt = Variable(torch.zeros(bs, dtype=torch.long).cuda().unsqueeze(1)) + self.spe_token_id
u_tokens_type = wt.new_zeros(wt.shape) # [Note] we assume the type tokens are 0.
history_states = image_encode[:-1]
len_prefix = history_states[0].shape[1]
total_history_states = [ history_states[0].new_zeros(beam_size * bs, image_encode[0].shape[1] + self.max_seq_len, image_encode[0].shape[2]) for _ in history_states]
for i, ths in enumerate(total_history_states):
hs = history_states[i]
ths[:hs.shape[0], :hs.shape[1], :] = hs
outputs = []
common_info = {
"modality": "text",
'data_type': 'input',
'moe_embedding': moe_embedding,
}
for t in range(self.max_seq_len):
cur_beam_size = 1 if t == 0 else beam_size
history_states = [ ths[ :(cur_beam_size*bs), :(len_prefix+t), :] for ths in total_history_states]
step_data = { "data": wt,
"time_step": t,
"sample_info":
{
"data_cum_length": [1, len_prefix, len_prefix+t+1]
}
}
step_data.update(common_info)
step_encode = model._forward_data([step_data], task_info=task_info, history_states=history_states, return_all=False)
step_predictor_input = {
"input_sample_list": step_encode,
"target_sample_list": [],
"shared_target_sets": {self.vocab_name: [vocab_encode]},
"target_set_list": [self.vocab_name],
"target_idx_list": [],
"task_info": task_info
}
logit = model.loss_prepare(**step_predictor_input)['output']
with autocast(enabled=not self.cfg.SOLVER.FORCE_SOFTMAX_FP16):
word_logprob = F.log_softmax(logit, dim=-1)
word_logprob = word_logprob.view(bs, cur_beam_size, -1)
candidate_logprob = seq_logprob + word_logprob
# # Mask sequence if it reaches EOS
# if t > 0:
# mask = (selected_words.view(bs, cur_beam_size) != 0).float().unsqueeze(-1) # 为什么是不等于0
# seq_mask = seq_mask * mask
# word_logprob = word_logprob * seq_mask.expand_as(word_logprob)
# old_seq_logprob = seq_logprob.expand_as(candidate_logprob).contiguous()
# old_seq_logprob[:, :, 1:] = -999
# candidate_logprob = seq_mask * candidate_logprob + old_seq_logprob * (1 - seq_mask)
if t > 0:
mask = (selected_words.view(bs, cur_beam_size) != self.eos_token_id).float().unsqueeze(-1)
seq_mask = seq_mask * mask
word_logprob = word_logprob * seq_mask.expand_as(word_logprob)
old_seq_logprob = seq_logprob.expand_as(candidate_logprob).contiguous()
old_seq_logprob[:, :, :self.eos_token_id] = -999
old_seq_logprob[:, :, self.eos_token_id + 1:] = -999
candidate_logprob = seq_mask * candidate_logprob + old_seq_logprob * (1 - seq_mask)
selected_idx, selected_logprob = self._select(bs, beam_size, t, candidate_logprob) # bs beam
selected_beam = torch.div(selected_idx, candidate_logprob.shape[-1], rounding_mode='floor')
selected_words = selected_idx - selected_beam * candidate_logprob.shape[-1]
self._expand_state(history_states, selected_beam, bs, beam_size, cur_beam_size)
seq_logprob = selected_logprob.unsqueeze(-1)
seq_mask = torch.gather(seq_mask, 1, selected_beam.unsqueeze(-1))
outputs = list(torch.gather(o, 1, selected_beam.unsqueeze(-1)) for o in outputs)
outputs.append(selected_words.unsqueeze(-1))
this_word_logprob = torch.gather(word_logprob, 1,
selected_beam.unsqueeze(-1).expand(bs, beam_size, word_logprob.shape[-1]))
this_word_logprob = torch.gather(this_word_logprob, 2, selected_words.unsqueeze(-1))
log_probs = list(
torch.gather(o, 1, selected_beam.unsqueeze(-1).expand(bs, beam_size, 1)) for o in log_probs)
log_probs.append(this_word_logprob)
selected_words = selected_words.view(-1, 1)
# wt = selected_words
if t == 0:
u_tokens_type = expand_tensor(u_tokens_type, beam_size)
wt = expand_tensor(wt, beam_size)
step_selected_data = {"data": selected_words, "time_step": t, "sample_info": {"data_cum_length": [1, len_prefix, len_prefix+t+1]}}
step_selected_data.update(common_info)
step_selected_encode = model._forward_data([step_selected_data], task_info=task_info, history_states=history_states, return_all=True)
for i, ths in enumerate(total_history_states):
hs = history_states[i]
ths[:hs.shape[0], :hs.shape[1], :] = hs
ths[:hs.shape[0], hs.shape[1], :] = step_selected_encode[0]['data'][i].squeeze(1)
outputs = torch.cat(outputs, -1)
if self.len_penalty > 0:
step = outputs.ne(self.eos_token_id).sum(-1, keepdim=True) + 1
seq_logprob /= step ** self.len_penalty
seq_logprob, sort_idxs = torch.sort(seq_logprob, 1, descending=True)
outputs = torch.gather(outputs, 1, sort_idxs.expand(bs, beam_size, self.max_seq_len))
log_probs = torch.cat(log_probs, -1)
log_probs = torch.gather(log_probs, 1, sort_idxs.expand(bs, beam_size, self.max_seq_len))
outputs = outputs.contiguous()[:, :out_size]
log_probs = log_probs.contiguous()[:, :out_size]
if out_size == 1:
outputs = outputs.squeeze(1)
log_probs = log_probs.squeeze(1)
comm._CAPTION_GEN_MODE = False
ids = torch.stack([torch.tensor(v['id']) for v in inputs['input_sample_list'][0]['sample_info']])
return {
"IDS": ids,
"G_SENTS_IDS": outputs,
"G_LOGP": log_probs
}
|