File size: 9,764 Bytes
32b542e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright (c) 2019, AImageLab
import torch
from torch import nn
import torch.nn.functional as F
from torch.autograd import Variable
from uniperceiver.config import configurable
from uniperceiver.functional import expand_tensor
from .decode_strategy import DecodeStrategy
from .build import DECODE_STRATEGY_REGISTRY
from uniperceiver.utils import comm
import math
from torch.cuda.amp import autocast

@DECODE_STRATEGY_REGISTRY.register()
class CaptionBeamSearcherV3(DecodeStrategy):

    def data_half(self, data):
        if self.fp16:
            for k, v in data.items():
                if isinstance(v, torch.Tensor) and v.dtype == torch.float32:
                    data[k] = v.half()
                    # print(k)
            return data
        else:
            return data




    def _select(self, batch_size, beam_size, t, candidate_logprob):
        selected_logprob, selected_idx = torch.sort(candidate_logprob.view(batch_size, -1), -1, descending=True)
        selected_logprob, selected_idx = selected_logprob[:, :beam_size], selected_idx[:, :beam_size]
        return selected_idx, selected_logprob

    def _expand_state(self, states, selected_beam, batch_size, beam_size, cur_beam_size):
        for i in range(len(states)):
            shape = list(states[i].shape)
            beam = selected_beam
            for _ in shape[1:]:
                beam = beam.unsqueeze(-1)
            states[i] = torch.gather(states[i].view(*([batch_size, cur_beam_size] + shape[1:])), 1,
                beam.expand(*([batch_size, beam_size] + shape[1:])))
            states[i] = states[i].view(*([-1, ] + shape[1:]))


    def _forward(self, batched_inputs, model):
        # only two  caption tasks are generative task now!
        # for caption tasks, the computations are:
        # 1. encode the image sequence; save for further use.
        # 2. if no cached encoded dictionary, encode the dictionary and save; otherwise reuse cache.
        # 3. compute attention. We use cross attention insted of self attention.

        # batched_inputs[kfg.IMAGE] = batched_inputs.pop(kfg.VIDEO).squeeze(1)

        inputs = batched_inputs
        inputs = self.data_half(inputs)


        out_size = batched_inputs.get('OUT_SIZE', 1)

        task_info = inputs['task_info']
        bs = task_info['batch_size']
        if isinstance(bs, torch.Tensor):
            bs = bs.item()

        image_input = inputs['input_sample_list']
        vocab_input = inputs['shared_target_sets'][self.vocab_name]


        # 1. encode the image/video sequence.
        moe_embedding = None
        for image_data in image_input:
            if 'moe_embedding' in image_data:
                moe_embedding = image_data['moe_embedding']
        image_encode = model._forward_data(image_input, task_info=task_info, return_all=True)[0]['data']


        # 2. encode the vocabulary - if no pre-computed, add that into input
        if getattr(self, 'pre_computed_word_embeds', None) is None:
            vocab_encode = model._forward_data(vocab_input, task_info=task_info, return_all=False)[0]
            self.pre_computed_word_embeds = vocab_encode
        else:
            vocab_encode = self.pre_computed_word_embeds

        # 3. compute attention

        comm._CAPTION_GEN_MODE = True
        task_info.update({"prefix_spe_before_fuse": False})

        beam_size = self.beam_size
        log_probs = []
        selected_words = None
        seq_logprob = torch.zeros((bs, 1, 1)).cuda() # bs, 1, 1
        seq_mask = torch.ones((bs, beam_size, 1)).cuda()
        wt = Variable(torch.zeros(bs, dtype=torch.long).cuda().unsqueeze(1)) + self.spe_token_id
        u_tokens_type = wt.new_zeros(wt.shape) # [Note] we assume the type tokens are 0.

        history_states = image_encode[:-1]
        len_prefix = history_states[0].shape[1]
        total_history_states = [ history_states[0].new_zeros(beam_size * bs, image_encode[0].shape[1] + self.max_seq_len, image_encode[0].shape[2]) for _ in history_states]
        for i, ths in enumerate(total_history_states):
            hs = history_states[i]
            ths[:hs.shape[0], :hs.shape[1], :] = hs

        outputs = []
        common_info =  {
            "modality": "text",
            'data_type': 'input',
            'moe_embedding': moe_embedding,

        }
        for t in range(self.max_seq_len):
            cur_beam_size = 1 if t == 0 else beam_size

            history_states = [ ths[ :(cur_beam_size*bs), :(len_prefix+t), :] for ths in total_history_states]

            step_data = {   "data": wt,
                            "time_step": t,
                            "sample_info":
                            {
                                "data_cum_length": [1, len_prefix, len_prefix+t+1]
                            }
                            }
            step_data.update(common_info)

            step_encode = model._forward_data([step_data], task_info=task_info, history_states=history_states, return_all=False)

            step_predictor_input = {
                "input_sample_list": step_encode,
                "target_sample_list": [],
                "shared_target_sets": {self.vocab_name: [vocab_encode]},
                "target_set_list": [self.vocab_name],
                "target_idx_list": [],
                "task_info": task_info
            }
            logit = model.loss_prepare(**step_predictor_input)['output']

            with autocast(enabled=not self.cfg.SOLVER.FORCE_SOFTMAX_FP16):
                word_logprob = F.log_softmax(logit, dim=-1)
            word_logprob = word_logprob.view(bs, cur_beam_size, -1)
            candidate_logprob = seq_logprob + word_logprob

            # # Mask sequence if it reaches EOS
            # if t > 0:
            #     mask = (selected_words.view(bs, cur_beam_size) != 0).float().unsqueeze(-1) # 为什么是不等于0
            #     seq_mask = seq_mask * mask
            #     word_logprob = word_logprob * seq_mask.expand_as(word_logprob)
            #     old_seq_logprob = seq_logprob.expand_as(candidate_logprob).contiguous()
            #     old_seq_logprob[:, :, 1:] = -999
            #     candidate_logprob = seq_mask * candidate_logprob + old_seq_logprob * (1 - seq_mask)

            if t > 0:
                mask = (selected_words.view(bs, cur_beam_size) != self.eos_token_id).float().unsqueeze(-1)
                seq_mask = seq_mask * mask
                word_logprob = word_logprob * seq_mask.expand_as(word_logprob)
                old_seq_logprob = seq_logprob.expand_as(candidate_logprob).contiguous()
                old_seq_logprob[:, :, :self.eos_token_id] = -999
                old_seq_logprob[:, :, self.eos_token_id + 1:] = -999
                candidate_logprob = seq_mask * candidate_logprob + old_seq_logprob * (1 - seq_mask)

            selected_idx, selected_logprob = self._select(bs, beam_size, t, candidate_logprob) # bs beam
            selected_beam = torch.div(selected_idx, candidate_logprob.shape[-1], rounding_mode='floor')
            selected_words = selected_idx - selected_beam * candidate_logprob.shape[-1]

            self._expand_state(history_states, selected_beam, bs, beam_size, cur_beam_size)

            seq_logprob = selected_logprob.unsqueeze(-1)
            seq_mask = torch.gather(seq_mask, 1, selected_beam.unsqueeze(-1))
            outputs = list(torch.gather(o, 1, selected_beam.unsqueeze(-1)) for o in outputs)
            outputs.append(selected_words.unsqueeze(-1))

            this_word_logprob = torch.gather(word_logprob, 1,
                selected_beam.unsqueeze(-1).expand(bs, beam_size, word_logprob.shape[-1]))
            this_word_logprob = torch.gather(this_word_logprob, 2, selected_words.unsqueeze(-1))
            log_probs = list(
                torch.gather(o, 1, selected_beam.unsqueeze(-1).expand(bs, beam_size, 1)) for o in log_probs)
            log_probs.append(this_word_logprob)
            selected_words = selected_words.view(-1, 1)
            # wt = selected_words

            if t == 0:
                u_tokens_type = expand_tensor(u_tokens_type, beam_size)
                wt = expand_tensor(wt, beam_size)

            step_selected_data = {"data": selected_words, "time_step": t, "sample_info": {"data_cum_length":  [1, len_prefix, len_prefix+t+1]}}
            step_selected_data.update(common_info)

            step_selected_encode = model._forward_data([step_selected_data], task_info=task_info, history_states=history_states, return_all=True)

            for i, ths in enumerate(total_history_states):
                hs = history_states[i]
                ths[:hs.shape[0], :hs.shape[1], :] = hs
                ths[:hs.shape[0], hs.shape[1], :] = step_selected_encode[0]['data'][i].squeeze(1)

        outputs = torch.cat(outputs, -1)


        if self.len_penalty > 0:
            step = outputs.ne(self.eos_token_id).sum(-1, keepdim=True) + 1
            seq_logprob /= step ** self.len_penalty
        seq_logprob, sort_idxs = torch.sort(seq_logprob, 1, descending=True)

        outputs = torch.gather(outputs, 1, sort_idxs.expand(bs, beam_size, self.max_seq_len))
        log_probs = torch.cat(log_probs, -1)
        log_probs = torch.gather(log_probs, 1, sort_idxs.expand(bs, beam_size, self.max_seq_len))

        outputs = outputs.contiguous()[:, :out_size]
        log_probs = log_probs.contiguous()[:, :out_size]
        if out_size == 1:
            outputs = outputs.squeeze(1)
            log_probs = log_probs.squeeze(1)

        comm._CAPTION_GEN_MODE = False

        ids = torch.stack([torch.tensor(v['id']) for v in inputs['input_sample_list'][0]['sample_info']])

        return {
            "IDS": ids,
            "G_SENTS_IDS": outputs,
            "G_LOGP": log_probs
        }