File size: 4,721 Bytes
32b542e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
from torch import nn

from uniperceiver.config import configurable

from ..layers.transformer_encoder_layer import TransformerEncoderLayer
from .build import ENCODER_REGISTRY

import uniperceiver.utils.comm as comm

__all__ = ["StandardViT", "TextEncoder", "VisualEncoder"]



@ENCODER_REGISTRY.register()
class StandardViT(nn.Module):
    @configurable
    def __init__(self, *, num_hidden_layers: int, bert_layers, cfg):
        super(StandardViT, self).__init__()
        self.num_hidden_layers = num_hidden_layers
        self.layers = bert_layers
        self.cfg = cfg
        self.name = cfg.NAME

    @classmethod
    def from_config(cls, cfg, global_cfg):
        if cfg.DROP_PATH_PROB_FIXED:
            dpr = [cfg.DROP_PATH_PROB for _ in range(cfg.NUM_HIDDEN_LAYERS)]
        else:
            dpr = [x.item() for x in torch.linspace(0, cfg.DROP_PATH_PROB, cfg.NUM_HIDDEN_LAYERS)]

        layers = []
        for i in range(cfg.NUM_HIDDEN_LAYERS):
            layers.append(
                TransformerEncoderLayer(
                    d_model=cfg.HIDDEN_SIZE,
                    nhead=cfg.NUM_ATTENTION_HEADS,
                    dim_feedforward=cfg.INTERMEDIATE_SIZE,
                    dropout=cfg.HIDDEN_DROPOUT_PROB,
                    drop_path_ratio=dpr[i],
                    activation=cfg.HIDDEN_ACT,
                    layer_scale=global_cfg.MODEL.LAYER_SCALE,
                    ls_init_values=global_cfg.MODEL.LAYER_SCALE_INIT,
                    batch_first=True,
                    norm_first=True,
                    cfg=cfg,
                ))

        bert_layers = nn.ModuleList(
            layers
        )
        return {
            "num_hidden_layers": cfg.NUM_HIDDEN_LAYERS,
            "bert_layers": bert_layers,
            "cfg": cfg
        }

    @classmethod
    def add_config(cls, cfg):
        pass

    def _forward(self, x, attn_mask=None, key_padding_masks=None, history_states=None, *kwargs):

        for l, layer_module in enumerate(self.layers):
            x = layer_module(
                src=x, src_mask=attn_mask, src_key_padding_mask=key_padding_masks
            )

        return x


    def forward(self, batched_inputs, return_all=False):

        raise NotImplementedError

@ENCODER_REGISTRY.register()
class  VisualEncoder(StandardViT):

    @staticmethod
    def _construct_attention_masks( data, sample_info, task_info):

        return None

    def forward(self, data, invalid_mask, sample_info, task_info, **kwargs):
        #TODO: prepare attn mask for each task type
        # used for visual encoder
        attn_mask = self._construct_attention_masks(data, sample_info, task_info)
        history_states = kwargs.pop('history_states', None)
        out = self._forward(data,
                            attn_mask,
                            invalid_mask,
                            history_states=history_states,
                            **kwargs,
                            )

        return out


@ENCODER_REGISTRY.register()
class  TextEncoder(StandardViT):

    @staticmethod
    def _construct_attention_masks( data, sample_info, task_info):
        mask_type = torch.bool
        device = data.device

        attn_mask = None
        if isinstance(sample_info, list):
            sample_info = sample_info[0]
        if task_info['task_type'] in ['image_caption', 'video_caption'] and sample_info.get('text_spe_cat', False):
            total_length = data.shape[1]
            attn_mask  = torch.ones((total_length, total_length), dtype=mask_type, device=device)
            attn_mask[:total_length // 2, :total_length // 2] = torch.ones(
                (total_length // 2, total_length // 2),  dtype=mask_type, device=device).triu_(diagonal=1)
            attn_mask[total_length // 2:, : total_length // 2] = torch.ones(
                (total_length // 2, total_length // 2),
                dtype=mask_type,
                device=device).triu_(diagonal=0)
            attn_mask[total_length // 2:, total_length // 2:] = ~torch.ones(
                (total_length // 2),
                dtype=mask_type,
                device=device).diag()

        return  attn_mask

    def forward(self, data, invalid_mask, sample_info, task_info, **kwargs):
        #TODO: prepare attn mask for each task type
        # used for text encoder
        attn_mask = self._construct_attention_masks(data, sample_info, task_info)
        history_states = kwargs.pop('history_states', None)
        out = self._forward(data,
                            attn_mask,
                            invalid_mask,
                            history_states=history_states,
                            **kwargs)

        return out